login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A106239 Triangle read by rows: T(n,m) = number of graphs on n labeled nodes, with m components of size = order. Also number of graphs on n labeled nodes with m unicyclic components. 4
0, 0, 0, 1, 0, 0, 15, 0, 0, 0, 222, 0, 0, 0, 0, 3660, 10, 0, 0, 0, 0, 68295, 525, 0, 0, 0, 0, 0, 1436568, 20307, 0, 0, 0, 0, 0, 0, 33779340, 727020, 280, 0, 0, 0, 0, 0, 0, 880107840, 25934184, 31500, 0, 0, 0, 0, 0, 0, 0, 25201854045, 950478210, 2325015, 0, 0, 0, 0, 0, 0, 0, 0 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,7

COMMENTS

Also the Bell transform of A057500(n+1). For the definition of the Bell transform see A264428. - Peter Luschny, Jan 27 2016

LINKS

Alois P. Heinz, Rows n = 1..141, flattened

Washington Bomfim, Illustration of this sequence

FORMULA

E.g.f.: exp(-y/2*log(1+LambertW(-x))+y/2*LambertW(-x)-y/4*LambertW(-x)^2). - Vladeta Jovovic, May 04 2005

T(n,m) = sum N/D over the partitions of n: 1K1 + 2K2 +  ... + nKn, = with exactly m parts greater than 2, where N = n!*Product_{i=1..n} A057500(i)^Ki and D = Product_{i=1..n}Ki!(i!)^Ki.

T(n,1) = A057500(n), T(n,m) = Sum_{j=2..n-1} C(n-1,j) * A057500(j+1) * T(n-1-j,m-1) if m>1. - Alois P. Heinz, Sep 15 2008

EXAMPLE

T(6,2) = 10 because there are 10 such graphs of order 6 with 2 components. The value of T(n,m) is zero if and only if m > floor(n/3).

Triangle T(n,m) begins:

          0;

          0,        0;

          1,        0,     0;

         15,        0,     0, 0;

        222,        0,     0, 0, 0;

       3660,       10,     0, 0, 0, 0;

      68295,      525,     0, 0, 0, 0, 0;

    1436568,    20307,     0, 0, 0, 0, 0, 0;

   33779340,   727020,   280, 0, 0, 0, 0, 0, 0;

  880107840, 25934184, 31500, 0, 0, 0, 0, 0, 0, 0;

MAPLE

cy:= proc(n) option remember; local t; binomial(n-1, 2) *add ((n-3)! /(n-2-t)! *n^(n-2-t), t=1..n-2) end: T:= proc(n, m) if m=1 then cy(n) else add (binomial(n-1, j) *cy(j+1) * T(n-1-j, m-1), j=2..n-1) fi end: seq (seq (T(n, m), m=1..n), n=1..11); # Alois P. Heinz, Sep 15 2008

# The function BellMatrix is defined in A264428.

# Adds (1, 0, 0, 0, ..) as column 0.

a := n -> n!*n^(n-1)/2*add(1/(n^k*(n-k)!), k=3..n);

BellMatrix(n -> a(n+1), 9); # Peter Luschny, Jan 27 2016

MATHEMATICA

nn=12; t=Sum[n^(n-1)x^n/n!, {n, 1, nn}]; Range[0, nn]!CoefficientList[ Series[Exp[y(Log[1/(1-t)]/2-t/2-t^2/4)], {x, 0, nn}], {x, y}] //Grid  (* Geoffrey Critzer, Nov 04 2012 *)

CROSSREFS

Cf. A057500 and A106238 (similar formulas that can be used in the unlabeled case).

Sequence in context: A123652 A127622 A185294 * A271763 A271339 A202857

Adjacent sequences:  A106236 A106237 A106238 * A106240 A106241 A106242

KEYWORD

nonn,tabl

AUTHOR

Washington Bomfim, May 03 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 7 08:21 EST 2016. Contains 278849 sequences.