login
A287285
Decimal representation of the diagonal from the corner to the origin of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 260", based on the 5-celled von Neumann neighborhood.
4
1, 0, 1, 0, 0, 0, 0, 0, 15, 0, 0, 0, 0, 0, 0, 0, 224, 0, 0, 0, 64, 0, 0, 0, 0, 0, 32, 0, 48, 0, 256, 0, 57348, 0, 0, 0, 16392, 0, 7232, 0, 68, 0, 19980, 0, 64, 0, 0, 0, 33284, 0, 33152, 0, 49664, 0, 0, 0, 60, 0, 532480, 0, 12779552, 0, 192, 0, 3774878476, 0
OFFSET
0,9
COMMENTS
Initialized with a single black (ON) cell at stage zero.
REFERENCES
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
MATHEMATICA
CAStep[rule_, a_] := Map[rule[[10 - #]] &, ListConvolve[{{0, 2, 0}, {2, 1, 2}, {0, 2, 0}}, a, 2], {2}];
code = 260; stages = 128;
rule = IntegerDigits[code, 2, 10];
g = 2 * stages + 1; (* Maximum size of grid *)
a = PadLeft[{{1}}, {g, g}, 0, Floor[{g, g}/2]]; (* Initial ON cell on grid *)
ca = a;
ca = Table[ca = CAStep[rule, ca], {n, 1, stages + 1}];
PrependTo[ca, a];
(* Trim full grid to reflect growth by one cell at each stage *)
k = (Length[ca[[1]]] + 1)/2;
ca = Table[Table[Part[ca[[n]] [[j]], Range[k + 1 - n, k - 1 + n]], {j, k + 1 - n, k - 1 + n}], {n, 1, k}];
Table[FromDigits[Part[ca[[i]] [[i]], Range[i, 2 * i - 1]], 10], {i, 1, stages - 1}]
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Robert Price, May 22 2017
STATUS
approved