OFFSET
1,4
COMMENTS
a(n) = 0 if and only if n < m + (((1+m)*m - 1)^2 -1)/8, where m is the number of trees in the forests counted by a(n).
LINKS
Alois P. Heinz, Rows n = 1..141, flattened
FORMULA
a(n) = sum over the partitions of N: 1K1 + 2K2 + ... + NKN, with exactly m distinct parts, of Product_{i=1..N}binomial(A000081(i)+Ki-1, Ki). Because all the multiplicities of the parts of the considered partitions are 1, or 0, we can simplify the formula to a(n)= sum over the partitions of N with exactly m distinct parts, of Product_{i=1..N}A000081(i). (Naturally, we do not consider the parts with multiplicity 0.)
G.f.: Product_{k>0} (1 + y*A000081(k)*x^k). - Vladeta Jovovic, May 14 2005
EXAMPLE
a(3) = 0 because m = 2 and (see comments) 3 < (2 + 3).
a(4) > 0 because m = 1. Note that (((1+m)*m - 1)^2 -1)/8 = 0, if m = 1. It is clear that n >= m.
MAPLE
with(numtheory):
g:= proc(n) option remember; `if`(n<=1, n, (add(add(
d*g(d), d=divisors(j))*g(n-j), j=1..n-1))/(n-1))
end:
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
expand(add(x^j*b(n-i*j, i-1)*binomial(g(i)+j-1, j),
j=0..min(1, n/i)))))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=1..n))(b(n$2)):
seq(T(n), n=1..14); # Alois P. Heinz, Jun 25 2014
MATHEMATICA
g[n_] := g[n] = If[n <= 1, n, (Sum[Sum[d*g[d], {d, Divisors[j]}]*g[n-j], {j, 1, n-1}])/(n-1)]; b[n_, i_] := b[n, i] = If[n == 0, 1, If[i<1, 0, Expand[Sum[x^j*b[n - i*j, i-1]*Binomial[g[i]+j-1, j], {j, 0, Min[1, n/i]}]]]]; T[n_] := Function[{p}, Table[Coefficient[p, x, i], {i, 1, n}]][b[n, n]]; Table[T[n], {n, 1, 14}] // Flatten (* Jean-François Alcover, Feb 23 2015, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Washington Bomfim, Apr 28 2005
STATUS
approved