login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A105632
Triangle, read by rows, where the g.f. A(x,y) satisfies the equation: A(x,y) = 1/(1-x*y) + x*A(x,y) + x^2*A(x,y)^2.
4
1, 1, 1, 2, 1, 1, 4, 3, 1, 1, 9, 7, 4, 1, 1, 21, 19, 10, 5, 1, 1, 51, 51, 31, 13, 6, 1, 1, 127, 141, 91, 45, 16, 7, 1, 1, 323, 393, 276, 141, 61, 19, 8, 1, 1, 835, 1107, 834, 461, 201, 79, 22, 9, 1, 1, 2188, 3139, 2535, 1485, 701, 271, 99, 25, 10, 1, 1, 5798, 8953, 7711, 4803, 2381, 1001, 351, 121, 28, 11, 1, 1
OFFSET
0,4
COMMENTS
Column 0 is A001006 (Motzkin numbers). Column 1 is A002426 (Central trinomial coefficients). Row sums form A105633 (also equal to A057580?).
T(n,k) is the number of UUDU-avoiding Dyck paths of semilength n+1 with k UDUs, where U = (1,1) is an upstep and D = (1,-1) is a downstep. For example, T(3,1) = 3 counts UDUUUDDD, UDUUDDUD, UUDDUDUD. - David Callan, Nov 25 2021
FORMULA
G.f. for column k (k>0): Sum_{j=0..k-1} C(k-1, j)*A000108(j)*x^(2*j)/(1-2*x-3*x^2)^(j+1/2), where A000108(j) = binomial(2*j, j)/(j+1) is the j-th Catalan number.
G.f.: A(x, y) = (1-x - sqrt((1-x)^2 - 4*x^2/(1-x*y)))/(2*x^2).
EXAMPLE
Triangle begins:
1;
1, 1;
2, 1, 1;
4, 3, 1, 1;
9, 7, 4, 1, 1;
21, 19, 10, 5, 1, 1;
51, 51, 31, 13, 6, 1, 1;
127, 141, 91, 45, 16, 7, 1, 1;
323, 393, 276, 141, 61, 19, 8, 1, 1;
835, 1107, 834, 461, 201, 79, 22, 9, 1, 1; ...
Let G = (1-2*x-3*x^2), then the column g.f.s are:
k=1: 1/sqrt(G)
k=2: (G + (1)*1*x^2)/sqrt(G^3)
k=3: (G^2 + (1)*2*x^2*G + (2)*1*x^4)/sqrt(G^5)
k=4: (G^3 + (1)*3*x^2*G^2 + (2)*3*x^4*G + (5)*1*x^6)/sqrt(G^7)
k=5: (G^4 + (1)*4*x^2*G^3 + (2)*6*x^4*G^2 + (5)*4*x^6*G + (14)*1*x^8)/sqrt(G^9)
and involve Catalan numbers and binomial coefficients.
MATRIX INVERSE.
The matrix inverse starts
1;
-1, 1;
-1, -1, 1;
0, -2, -1, 1;
2, -1, -3, -1, 1;
6, 2, -2, -4, -1, 1;
13, 10, 2, -3, -5, -1, 1;
18, 32, 14, 2, -4, -6, -1, 1;
-12, 76, 56, 18, 2, -5, -7, -1, 1;
-206, 108, 162, 86, 22, 2, -6, -8, -1, 1;
- R. J. Mathar, Apr 08 2013
MAPLE
A105632 := proc(n, k)
(1-x-sqrt((1-x)^2-4*x^2/(1-x*y)))/2/x^2 ;
coeftayl(%, x=0, n) ;
coeftayl(%, y=0, k) ;
end proc: # R. J. Mathar, Apr 08 2013
MATHEMATICA
T[n_, k_] := SeriesCoefficient[(1 - x - Sqrt[(1 - x)^2 - 4*x^2/(1 - x*y)])/(2*x^2), {x, 0, n}] // SeriesCoefficient[#, {y, 0, k}]&;
Table[T[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 10 2023 *)
PROG
(PARI) {T(n, k)=local(A=1+x+x*y+x*O(x^n)+y*O(y^k)); for(i=1, n, A=1/(1-x*y)+x*A+x^2*A^2); polcoeff(polcoeff(A, n, x), k, y)}
(PARI) {T(n, k)=local(X=x+x*O(x^n), Y=y+y*O(y^k)); polcoeff(polcoeff( 2/(1-X+sqrt((1-X)^2-4*X^2/(1-X*Y)))/(1-X*Y), n, x), k, y)}
CROSSREFS
Cf. A105633 (row sums), A001006 (column 0), A002426 (column 1).
Sequence in context: A217781 A339428 A204849 * A091491 A117418 A101494
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Apr 17 2005
STATUS
approved