OFFSET
0,4
COMMENTS
Column 0 is A001006 (Motzkin numbers). Column 1 is A002426 (Central trinomial coefficients). Row sums form A105633 (also equal to A057580?).
T(n,k) is the number of UUDU-avoiding Dyck paths of semilength n+1 with k UDUs, where U = (1,1) is an upstep and D = (1,-1) is a downstep. For example, T(3,1) = 3 counts UDUUUDDD, UDUUDDUD, UUDDUDUD. - David Callan, Nov 25 2021
FORMULA
EXAMPLE
Triangle begins:
1;
1, 1;
2, 1, 1;
4, 3, 1, 1;
9, 7, 4, 1, 1;
21, 19, 10, 5, 1, 1;
51, 51, 31, 13, 6, 1, 1;
127, 141, 91, 45, 16, 7, 1, 1;
323, 393, 276, 141, 61, 19, 8, 1, 1;
835, 1107, 834, 461, 201, 79, 22, 9, 1, 1; ...
Let G = (1-2*x-3*x^2), then the column g.f.s are:
k=1: 1/sqrt(G)
k=2: (G + (1)*1*x^2)/sqrt(G^3)
k=3: (G^2 + (1)*2*x^2*G + (2)*1*x^4)/sqrt(G^5)
k=4: (G^3 + (1)*3*x^2*G^2 + (2)*3*x^4*G + (5)*1*x^6)/sqrt(G^7)
k=5: (G^4 + (1)*4*x^2*G^3 + (2)*6*x^4*G^2 + (5)*4*x^6*G + (14)*1*x^8)/sqrt(G^9)
and involve Catalan numbers and binomial coefficients.
MATRIX INVERSE.
The matrix inverse starts
1;
-1, 1;
-1, -1, 1;
0, -2, -1, 1;
2, -1, -3, -1, 1;
6, 2, -2, -4, -1, 1;
13, 10, 2, -3, -5, -1, 1;
18, 32, 14, 2, -4, -6, -1, 1;
-12, 76, 56, 18, 2, -5, -7, -1, 1;
-206, 108, 162, 86, 22, 2, -6, -8, -1, 1;
- R. J. Mathar, Apr 08 2013
MAPLE
A105632 := proc(n, k)
(1-x-sqrt((1-x)^2-4*x^2/(1-x*y)))/2/x^2 ;
coeftayl(%, x=0, n) ;
coeftayl(%, y=0, k) ;
end proc: # R. J. Mathar, Apr 08 2013
MATHEMATICA
T[n_, k_] := SeriesCoefficient[(1 - x - Sqrt[(1 - x)^2 - 4*x^2/(1 - x*y)])/(2*x^2), {x, 0, n}] // SeriesCoefficient[#, {y, 0, k}]&;
Table[T[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 10 2023 *)
PROG
(PARI) {T(n, k)=local(A=1+x+x*y+x*O(x^n)+y*O(y^k)); for(i=1, n, A=1/(1-x*y)+x*A+x^2*A^2); polcoeff(polcoeff(A, n, x), k, y)}
(PARI) {T(n, k)=local(X=x+x*O(x^n), Y=y+y*O(y^k)); polcoeff(polcoeff( 2/(1-X+sqrt((1-X)^2-4*X^2/(1-X*Y)))/(1-X*Y), n, x), k, y)}
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Apr 17 2005
STATUS
approved