login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A105632 Triangle, read by rows, where the g.f. A(x,y) satisfies the equation: A(x,y) = 1/(1-x*y) + x*A(x,y) + x^2*A(x,y)^2. 4
1, 1, 1, 2, 1, 1, 4, 3, 1, 1, 9, 7, 4, 1, 1, 21, 19, 10, 5, 1, 1, 51, 51, 31, 13, 6, 1, 1, 127, 141, 91, 45, 16, 7, 1, 1, 323, 393, 276, 141, 61, 19, 8, 1, 1, 835, 1107, 834, 461, 201, 79, 22, 9, 1, 1, 2188, 3139, 2535, 1485, 701, 271, 99, 25, 10, 1, 1, 5798, 8953, 7711, 4803 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

Column 0 is A001006 (Motzkin numbers). Column 1 is A002426 (Central trinomial coefficients). Row sums form A105633 (also equal to A057580?).

The matrix inverse starts

1;

-1,1;

-1,-1,1;

0,-2,-1,1;

2,-1,-3,-1,1;

6,2,-2,-4,-1,1;

13,10,2,-3,-5,-1,1;

18,32,14,2,-4,-6,-1,1;

-12,76,56,18,2,-5,-7,-1,1;

-206,108,162,86,22,2,-6,-8,-1,1;

- R. J. Mathar, Apr 08 2013

LINKS

Table of n, a(n) for n=0..69.

FORMULA

G.f. for column k (k>0): Sum_{j=0..k-1} C(k-1, j)*A000108(j)*x^(2*j)/(1-2*x-3*x^2)^(j+1/2), where A000108(j) = binomial(2*j, j)/(j+1) is the j-th Catalan number.

G.f.: A(x, y) = (1-x - sqrt((1-x)^2 - 4*x^2/(1-x*y)))/(2*x^2).

EXAMPLE

Triangle begins:

1;

1,1;

2,1,1;

4,3,1,1;

9,7,4,1,1;

21,19,10,5,1,1;

51,51,31,13,6,1,1;

127,141,91,45,16,7,1,1;

323,393,276,141,61,19,8,1,1;

835,1107,834,461,201,79,22,9,1,1; ...

Let G = (1-2*x-3*x^2), then the column g.f.s are:

k=1: 1/sqrt(G)

k=2: (G +(1)*1*x^2)/sqrt(G^3)

k=3: (G^2 +(1)*2*x^2*G +(2)*1*x^4)/sqrt(G^5)

k=4: (G^3 +(1)*3*x^2*G^2 +(2)*3*x^4*G +(5)*1*x^6)/sqrt(G^7)

k=5: (G^4 +(1)*4*x^2*G^3 +(2)*6*x^4*G^2 +(5)*4*x^6*G +(14)*1*x^8)/sqrt(G^9)

and involve Catalan numbers and binomial coefficients.

MAPLE

A105632 := proc(n, k)

    (1-x-sqrt((1-x)^2-4*x^2/(1-x*y)))/2/x^2 ;

    coeftayl(%, x=0, n) ;

    coeftayl(%, y=0, k) ;

end proc: # R. J. Mathar, Apr 08 2013

PROG

(PARI) {T(n, k)=local(A=1+x+x*y+x*O(x^n)+y*O(y^k)); for(i=1, n, A=1/(1-x*y)+x*A+x^2*A^2); polcoeff(polcoeff(A, n, x), k, y)}

(PARI) {T(n, k)=local(X=x+x*O(x^n), Y=y+y*O(y^k)); polcoeff(polcoeff( 2/(1-X+sqrt((1-X)^2-4*X^2/(1-X*Y)))/(1-X*Y), n, x), k, y)}

CROSSREFS

Cf. A105633 (row sums), A001006 (column 0), A002426 (column 1).

Sequence in context: A033185 A217781 A204849 * A091491 A117418 A101494

Adjacent sequences:  A105629 A105630 A105631 * A105633 A105634 A105635

KEYWORD

nonn,tabl

AUTHOR

Paul D. Hanna, Apr 17 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 3 12:20 EST 2020. Contains 338902 sequences. (Running on oeis4.)