login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A105580 a(n+3) = a(n) - a(n+1) - a(n+2); a(0) = -5, a(1) = 6, a(2) = 0. 2
-5, 6, 0, -11, 17, -6, -22, 45, -29, -38, 112, -103, -47, 262, -318, 9, 571, -898, 336, 1133, -2367, 1570, 1930, -5867, 5507, 2290, -13664, 16881, -927, -29618, 47426, -18735, -58309, 124470, -84896, -97883, 307249, -294262, -110870, 712381, -895773, 72522, 1535632, -2503927, 1040817, 2998742 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

LINKS

Table of n, a(n) for n=0..45.

Index entries for linear recurrences with constant coefficients, signature (-1,-1,1).

FORMULA

G.f. (5-x-x^2)/(x^3-x^2-x-1)

Equals A078046(n-1) - A073145(n+3).

EXAMPLE

This sequence was generated using the same floretion which generated the sequences A105577, A105578, A105579, etc.. However, in this case a force transform was applied. [Specifically, (a(n)) may be seen as the result of a tesfor-transform of the zero-sequence A000004 with respect to the floretion given in the program code.]

MATHEMATICA

Transpose[NestList[Join[Rest[#], ListCorrelate[ {1, -1, -1}, #]]&, {-5, 6, 0}, 50]][[1]]  (* Harvey P. Dale, Mar 14 2011 *)

CoefficientList[Series[(5-x-x^2)/(x^3-x^2-x-1), {x, 0, 50}], x]  (* Harvey P. Dale, Mar 14 2011 *)

PROG

Floretion Algebra Multiplication Program, FAMP Code: 2tesforseq[.5'j + .5'k + .5j' + .5k' + .5'ii' + .5e], 1vesforseq = A000004, ForType: 1A.

CROSSREFS

Cf. A002249, A014551, A078020, A105577, A105578, A105581.

Sequence in context: A021869 A103492 A200010 * A047774 A243108 A287610

Adjacent sequences:  A105577 A105578 A105579 * A105581 A105582 A105583

KEYWORD

sign

AUTHOR

Creighton Dement, Apr 14 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified September 25 13:05 EDT 2017. Contains 292472 sequences.