login
A105580
a(n+3) = a(n) - a(n+1) - a(n+2); a(0) = -5, a(1) = 6, a(2) = 0.
2
-5, 6, 0, -11, 17, -6, -22, 45, -29, -38, 112, -103, -47, 262, -318, 9, 571, -898, 336, 1133, -2367, 1570, 1930, -5867, 5507, 2290, -13664, 16881, -927, -29618, 47426, -18735, -58309, 124470, -84896, -97883, 307249, -294262, -110870, 712381, -895773, 72522, 1535632, -2503927, 1040817, 2998742
OFFSET
0,1
COMMENTS
Floretion Algebra Multiplication Program, FAMP Code: 2tesforseq[.5'j + .5'k + .5j' + .5k' + .5'ii' + .5e], 1vesforseq = A000004, ForType: 1A.
FORMULA
G.f. (5-x-x^2)/(x^3-x^2-x-1)
a(n) = A078046(n-1) - A073145(n+3).
a(n) = -5*A057597(n+2) + A057597(n+1)+A057597(n). - R. J. Mathar, Oct 25 2022
EXAMPLE
This sequence was generated using the same floretion which generated the sequences A105577, A105578, A105579, etc.. However, in this case a force transform was applied. [Specifically, (a(n)) may be seen as the result of a tesfor-transform of the zero-sequence A000004 with respect to the floretion given in the program code.]
MATHEMATICA
Transpose[NestList[Join[Rest[#], ListCorrelate[ {1, -1, -1}, #]]&, {-5, 6, 0}, 50]][[1]] (* Harvey P. Dale, Mar 14 2011 *)
CoefficientList[Series[(5-x-x^2)/(x^3-x^2-x-1), {x, 0, 50}], x] (* Harvey P. Dale, Mar 14 2011 *)
CROSSREFS
KEYWORD
sign,easy
AUTHOR
Creighton Dement, Apr 14 2005
STATUS
approved