

A105580


a(n+3) = a(n)  a(n+1)  a(n+2); a(0) = 5, a(1) = 6, a(2) = 0.


2



5, 6, 0, 11, 17, 6, 22, 45, 29, 38, 112, 103, 47, 262, 318, 9, 571, 898, 336, 1133, 2367, 1570, 1930, 5867, 5507, 2290, 13664, 16881, 927, 29618, 47426, 18735, 58309, 124470, 84896, 97883, 307249, 294262, 110870, 712381, 895773, 72522, 1535632, 2503927, 1040817, 2998742
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,1


LINKS

Table of n, a(n) for n=0..45.
Index entries for linear recurrences with constant coefficients, signature (1,1,1).


FORMULA

G.f. (5xx^2)/(x^3x^2x1)
Equals A078046(n1)  A073145(n+3).


EXAMPLE

This sequence was generated using the same floretion which generated the sequences A105577, A105578, A105579, etc.. However, in this case a force transform was applied. [Specifically, (a(n)) may be seen as the result of a tesfortransform of the zerosequence A000004 with respect to the floretion given in the program code.]


MATHEMATICA

Transpose[NestList[Join[Rest[#], ListCorrelate[ {1, 1, 1}, #]]&, {5, 6, 0}, 50]][[1]] (* Harvey P. Dale, Mar 14 2011 *)
CoefficientList[Series[(5xx^2)/(x^3x^2x1), {x, 0, 50}], x] (* Harvey P. Dale, Mar 14 2011 *)


PROG

Floretion Algebra Multiplication Program, FAMP Code: 2tesforseq[.5'j + .5'k + .5j' + .5k' + .5'ii' + .5e], 1vesforseq = A000004, ForType: 1A.


CROSSREFS

Cf. A002249, A014551, A078020, A105577, A105578, A105581.
Sequence in context: A340319 A103492 A200010 * A047774 A243108 A287610
Adjacent sequences: A105577 A105578 A105579 * A105581 A105582 A105583


KEYWORD

sign


AUTHOR

Creighton Dement, Apr 14 2005


STATUS

approved



