login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A200010 Decimal expansion of least x satisfying x^2 - cos(x) = sin(x), negated. 3
5, 6, 0, 9, 8, 7, 7, 2, 9, 2, 3, 5, 9, 1, 1, 3, 7, 5, 2, 7, 7, 4, 3, 7, 0, 2, 8, 5, 3, 3, 6, 6, 8, 2, 3, 1, 7, 9, 9, 0, 9, 2, 1, 5, 5, 1, 9, 4, 7, 5, 5, 4, 2, 4, 5, 2, 8, 3, 2, 9, 7, 2, 2, 5, 4, 0, 7, 4, 4, 5, 9, 4, 6, 4, 3, 0, 6, 8, 8, 2, 4, 4, 1, 5, 5, 2, 8, 5, 5, 6, 6, 3, 2, 9, 2, 4, 0, 7, 9 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

See A199949 for a guide to related sequences.  The Mathematica program includes a graph.

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..10000

EXAMPLE

least x:  -0.560987729235911375277437028533668231799...

greatest x: 1.14955462727747318906952249474440902011...

MATHEMATICA

a = 1; b = -1; c = 1;

f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x]

Plot[{f[x], g[x]}, {x, -1, 2}, {AxesOrigin -> {0, 0}}]

r = x /. FindRoot[f[x] == g[x], {x, -.6, -.5}, WorkingPrecision -> 110]

RealDigits[r]   (* A200010 *)

r = x /. FindRoot[f[x] == g[x], {x, 1.1, 1.2}, WorkingPrecision -> 110]

RealDigits[r]   (* A200011 *)

PROG

(PARI) a=1; b=-1; c=1; solve(x=-1, 0, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jun 23 2018

CROSSREFS

Cf. A199949.

Sequence in context: A194347 A021869 A103492 * A105580 A047774 A243108

Adjacent sequences:  A200007 A200008 A200009 * A200011 A200012 A200013

KEYWORD

nonn,cons

AUTHOR

Clark Kimberling, Nov 12 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 18 18:38 EDT 2019. Contains 327180 sequences. (Running on oeis4.)