|
|
A105577
|
|
a(n+3) = 2a(n+2) - 3a(n+1) + 2a(n); a(0) = 1, a(1) = 5, a(2) = 6.
|
|
4
|
|
|
1, 5, 6, -1, -10, -5, 18, 31, -2, -61, -54, 71, 182, 43, -318, -401, 238, 1043, 570, -1513, -2650, 379, 5682, 4927, -6434, -16285, -3414, 29159, 35990, -22325, -94302, -49649, 138958, 238259, -39654, -516169, -436858, 595483, 1469202, 278239, -2660162, -3216637, 2103690, 8536967
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
LINKS
|
Table of n, a(n) for n=0..43.
|
|
FORMULA
|
a(n) = 2*a(n-1)-3*a(n-2)+2*a(n-3). G.f.: (1+3*x-x^2)/((1-x)*(1-x+2*x^2)). [Colin Barker, Mar 26 2012]
|
|
MATHEMATICA
|
LinearRecurrence[{2, -3, 2}, {1, 5, 6}, 50] (* Harvey P. Dale, Apr 13 2019 *)
|
|
PROG
|
Floretion Algebra Multiplication Program, FAMP Code: 2lesseq[.5'j + .5'k + .5j' + .5k' + .5'ii' + .5e]
|
|
CROSSREFS
|
Cf. A002249, A014551, A105578.
Equals (1/4) [A107920(n+4) + 2*A107920(n-1) + 3 ].
Sequence in context: A131947 A113262 A195823 * A054655 A290319 A321630
Adjacent sequences: A105574 A105575 A105576 * A105578 A105579 A105580
|
|
KEYWORD
|
sign,easy
|
|
AUTHOR
|
Creighton Dement, Apr 14 2005
|
|
STATUS
|
approved
|
|
|
|