login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A104468
Coefficients of the B-Bailey Mod 9 identity.
3
1, 0, -1, 1, 0, -1, 2, -1, -2, 3, -1, -3, 5, -1, -5, 7, -2, -7, 11, -3, -11, 15, -4, -14, 22, -6, -21, 30, -8, -28, 42, -11, -39, 55, -15, -51, 76, -20, -70, 99, -26, -90, 132, -35, -120, 171, -45, -154, 223, -58, -201, 285, -75, -255, 368, -96, -329, 465, -121, -413, 592, -154, -525, 743, -193, -656, 935, -242
OFFSET
0,7
LINKS
Eric Weisstein's World of Mathematics, Bailey Mod 9 Identities
FORMULA
G.f.: Product_{k>0} (1-x^(9*k-2)) * (1-x^(9*k-7)) / ( (1-x^(9*k-3)) * (1-x^(9*k-6)) ). - Seiichi Manyama, Oct 14 2019
EXAMPLE
G.f.: 1 - q^2 + q^3 - q^5 + 2*q^6 - q^7 - 2*q^8 + 3*q^9 - q^10 + ...
PROG
(PARI) N=66; x='x+O('x^N); Vec(prod(k=1, N, (1-x^(9*k-2))*(1-x^(9*k-7))/((1-x^(9*k-3))*(1-x^(9*k-6))))) \\ Seiichi Manyama, Oct 14 2019
CROSSREFS
Sequence in context: A011794 A221640 A073300 * A293003 A110062 A144215
KEYWORD
sign
AUTHOR
Eric W. Weisstein, Mar 09 2005
STATUS
approved