The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A104468 Coefficients of the B-Bailey Mod 9 identity. 3
 1, 0, -1, 1, 0, -1, 2, -1, -2, 3, -1, -3, 5, -1, -5, 7, -2, -7, 11, -3, -11, 15, -4, -14, 22, -6, -21, 30, -8, -28, 42, -11, -39, 55, -15, -51, 76, -20, -70, 99, -26, -90, 132, -35, -120, 171, -45, -154, 223, -58, -201, 285, -75, -255, 368, -96, -329, 465, -121, -413, 592, -154, -525, 743, -193, -656, 935, -242 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,7 LINKS Seiichi Manyama, Table of n, a(n) for n = 0..10000 Eric Weisstein's World of Mathematics, Bailey Mod 9 Identities FORMULA G.f.: Product_{k>0} (1-x^(9*k-2)) * (1-x^(9*k-7)) / ( (1-x^(9*k-3)) * (1-x^(9*k-6)) ). - Seiichi Manyama, Oct 14 2019 EXAMPLE G.f.: 1 - q^2 + q^3 - q^5 + 2*q^6 - q^7 - 2*q^8 + 3*q^9 - q^10 + ... PROG (PARI) N=66; x='x+O('x^N); Vec(prod(k=1, N, (1-x^(9*k-2))*(1-x^(9*k-7))/((1-x^(9*k-3))*(1-x^(9*k-6))))) \\ Seiichi Manyama, Oct 14 2019 CROSSREFS Cf. A104467, A104469. Sequence in context: A011794 A221640 A073300 * A293003 A110062 A144215 Adjacent sequences: A104465 A104466 A104467 * A104469 A104470 A104471 KEYWORD sign AUTHOR Eric W. Weisstein, Mar 09 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 7 09:17 EST 2022. Contains 358654 sequences. (Running on oeis4.)