login
A104468
Coefficients of the B-Bailey Mod 9 identity.
3
1, 0, -1, 1, 0, -1, 2, -1, -2, 3, -1, -3, 5, -1, -5, 7, -2, -7, 11, -3, -11, 15, -4, -14, 22, -6, -21, 30, -8, -28, 42, -11, -39, 55, -15, -51, 76, -20, -70, 99, -26, -90, 132, -35, -120, 171, -45, -154, 223, -58, -201, 285, -75, -255, 368, -96, -329, 465, -121, -413, 592, -154, -525, 743, -193, -656, 935, -242
OFFSET
0,7
LINKS
Eric Weisstein's World of Mathematics, Bailey Mod 9 Identities
FORMULA
G.f.: Product_{k>0} (1-x^(9*k-2)) * (1-x^(9*k-7)) / ( (1-x^(9*k-3)) * (1-x^(9*k-6)) ). - Seiichi Manyama, Oct 14 2019
EXAMPLE
G.f.: 1 - q^2 + q^3 - q^5 + 2*q^6 - q^7 - 2*q^8 + 3*q^9 - q^10 + ...
PROG
(PARI) N=66; x='x+O('x^N); Vec(prod(k=1, N, (1-x^(9*k-2))*(1-x^(9*k-7))/((1-x^(9*k-3))*(1-x^(9*k-6))))) \\ Seiichi Manyama, Oct 14 2019
CROSSREFS
Sequence in context: A011794 A221640 A073300 * A293003 A110062 A144215
KEYWORD
sign
AUTHOR
Eric W. Weisstein, Mar 09 2005
STATUS
approved