login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A104467
Coefficients of the A-Bailey Mod 9 identity.
3
1, 0, 0, 1, -1, -1, 2, -1, -1, 3, -2, -2, 5, -3, -3, 7, -5, -4, 11, -6, -6, 15, -10, -9, 22, -13, -12, 30, -19, -17, 42, -25, -23, 56, -35, -31, 77, -45, -41, 100, -62, -55, 133, -79, -71, 173, -105, -93, 226, -134, -120, 289, -175, -154, 373, -220, -196, 472, -284, -250, 601, -355, -314, 755, -451, -396, 950
OFFSET
0,7
LINKS
J. Mc Laughlin, A. V. Sills and P. Zimmer, Rogers-Ramanujan-Slater Type Identities, Electronic J. Combinatorics, DS15, 1-59, May 31, 2008. See "2.9 Mod 9 Identities".
Eric Weisstein's World of Mathematics, Bailey Mod 9 Identities
FORMULA
G.f.: Sum_{n>=0} q^(3*n^2) * Product_{k=1..3*n} (1-x^k) / (Product_{k=1..n} (1-x^(3*k)) * Product_{k=1..2*n} (1-x^(3*k))). - Seiichi Manyama, Oct 14 2019
G.f.: Product_{k>0} (1-x^(9*k-4)) * (1-x^(9*k-5)) / ( (1-x^(9*k-3)) * (1-x^(9*k-6)) ). - Seiichi Manyama, Oct 14 2019
EXAMPLE
G.f.: 1 + q^3 - q^4 - q^5 + 2*q^6 - q^7 - q^8 + 3*q^9 - 2*q^10 + ...
PROG
(PARI) N=66; x='x+O('x^N); Vec(prod(k=1, N, (1-x^(9*k-4))*(1-x^(9*k-5))/((1-x^(9*k-3))*(1-x^(9*k-6))))) \\ Seiichi Manyama, Oct 14 2019
CROSSREFS
Sequence in context: A226009 A132462 A161039 * A132463 A153901 A132844
KEYWORD
sign
AUTHOR
Eric W. Weisstein, Mar 09 2005
STATUS
approved