The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A144215 Triangle read by rows: T(n,k) is the number of forests on n unlabeled nodes with all nodes of degree <= k (n>=1, 0 <= k <= n-1). 5
 1, 1, 2, 1, 2, 3, 1, 3, 5, 6, 1, 3, 7, 9, 10, 1, 4, 11, 17, 19, 20, 1, 4, 15, 28, 34, 36, 37, 1, 5, 22, 52, 67, 73, 75, 76, 1, 5, 30, 90, 129, 144, 150, 152, 153, 1, 6, 42, 170, 264, 305, 320, 326, 328, 329, 1, 6, 56, 310, 542, 645, 686, 701, 707, 709, 710 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 LINKS Andrew Howroyd, Table of n, a(n) for n = 1..1275 (first 50 rows) R. Neville, Graphs whose vertices are forests with bounded degree, Graph Theory Notes of New York, LIV (2008), 12-21. FORMULA Column k is Euler transform of column k of A144528. - Andrew Howroyd, Dec 18 2020 EXAMPLE Triangle begins: 1 1 2 1 2 3 1 3 5 6 1 3 7 9 10 1 4 11 17 19 20 1 4 15 28 34 36 37 ... From Andrew Howroyd, Dec 18 2020: (Start) Formatted as an array to show the full columns: ======================================================== n\k | 0 1 2 3 4 5 6 7 8 9 10 -----+-------------------------------------------------- 1 | 1 1 1 1 1 1 1 1 1 1 1 ... 2 | 1 2 2 2 2 2 2 2 2 2 2 ... 3 | 1 2 3 3 3 3 3 3 3 3 3 ... 4 | 1 3 5 6 6 6 6 6 6 6 6 ... 5 | 1 3 7 9 10 10 10 10 10 10 10 ... 6 | 1 4 11 17 19 20 20 20 20 20 20 ... 7 | 1 4 15 28 34 36 37 37 37 37 37 ... 8 | 1 5 22 52 67 73 75 76 76 76 76 ... 9 | 1 5 30 90 129 144 150 152 153 153 153 ... 10 | 1 6 42 170 264 305 320 326 328 329 329 ... 11 | 1 6 56 310 542 645 686 701 707 709 710 ... 12 | 1 7 77 600 1161 1431 1536 1577 1592 1598 1600 ... (End) PROG (PARI) \\ Here V(n, k) gives column k of A144528. EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)} MSet(p, k)={my(n=serprec(p, x)-1); if(min(k, n)<1, 1 + O(x*x^n), polcoef(exp( sum(i=1, min(k, n), (y^i + O(y*y^k))*subst(p + O(x*x^(n\i)), x, x^i)/i ))/(1-y + O(y*y^k)), k, y))} V(n, k)={my(g=1+O(x)); for(n=2, n, g=x*MSet(g, k-1)); Vec(1 + x*MSet(g, k) + (subst(g, x, x^2) - g^2)/2)} M(n, m=n)={Mat(vector(m, k, EulerT(V(n, k-1)[2..1+n])~))} { my(T=M(12)); for(n=1, #T~, print(T[n, 1..n])) } \\ Andrew Howroyd, Dec 18 2020 CROSSREFS The final diagonal gives A005195. Column k=2 is A000041. Cf. A144528, A144529, A339788. Sequence in context: A104468 A293003 A110062 * A254539 A283827 A122087 Adjacent sequences: A144212 A144213 A144214 * A144216 A144217 A144218 KEYWORD nonn,tabl AUTHOR N. J. A. Sloane, Dec 20 2008 EXTENSIONS Terms a(29) and beyond from Andrew Howroyd, Dec 18 2020 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 2 11:37 EST 2022. Contains 358493 sequences. (Running on oeis4.)