This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A104395 Sums of 5 distinct positive pentatope numbers (A000332). 5
 126, 182, 217, 237, 247, 251, 266, 301, 321, 331, 335, 357, 377, 386, 387, 391, 412, 421, 422, 426, 441, 442, 446, 451, 455, 456, 477, 497, 507, 511, 532, 542, 546, 551, 561, 562, 566, 576, 581, 586, 591, 595, 606, 616, 620, 626, 630, 642, 646, 650 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Pentatope number Ptop(n) = binomial(n+3,4) = n*(n+1)*(n+2)*(n+3)/24. Hyun Kwang Kim asserts that every positive integer can be represented as the sum of no more than 8 pentatope numbers; but in this sequence we are only concerned with sums of nonzero distinct pentatope numbers. REFERENCES Conway, J. H. and Guy, R. K. The Book of Numbers. New York: Springer-Verlag, pp. 55-57, 1996. LINKS Hyun Kwang Kim, On Regular Polytope Numbers, Proc. Amer. Math. Soc., 131 (2003), 65-75. J. V. Post, Table of Polytope Numbers, Sorted, Through 1,000,000. Eric Weisstein's World of Mathematics, Pentatope Number. FORMULA a(n) = Ptop(g) + Ptop(h) + Ptop(i) + Ptop(j) + Ptop(k) for some positive g=/=h=/=i=/=j=/=k and Ptop(n) = binomial(n+3,4). CROSSREFS Cf. A000332, A100009, A102857, A104392, A104393, A104394. Sequence in context: A009944 A203566 A320292 * A267331 A267739 A290203 Adjacent sequences:  A104392 A104393 A104394 * A104396 A104397 A104398 KEYWORD easy,nonn AUTHOR Jonathan Vos Post, Mar 05 2005 EXTENSIONS Extended by Ray Chandler, Mar 05 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 14 02:29 EDT 2019. Contains 327995 sequences. (Running on oeis4.)