OFFSET
1,1
COMMENTS
This sequence is infinite since it contains all the terms of the form 6*(10^(6*t)+20)/35 and 33*(10^(6*t)*75+2)/7 for t > 0. The first pattern corresponds to terms 171432, 171428571432, 171428571428571432, ..., the second to terms 353571438, 353571428571438, 353571428571428571438,... . - Giovanni Resta, Oct 10 2018
EXAMPLE
234 is divisible by 3*(2+4).
4199 is divisible by 19*(4+9).
7222932 is divisible by 22293*(7+2).
MATHEMATICA
Select[Range[100, 10^6], And[FreeQ[#2, 0], Mod[#1, If[#2 == 0, #1 - 1, #2] & @@ {#1, (First@ #2 + Last@ #2) FromDigits@ Most@ Rest@ #2}] == 0] & @@ {#, IntegerDigits@ #} &] (* Michael De Vlieger, Oct 11 2018 *)
PROG
(PARI) isok(n) = {d = digits(n); if ((#d >= 3) && vecmin(d), x = d[1]; y = d[#d]; w = vector(#d-2, k, d[k+1]); z = fromdigits(w); if (z, return (!(n % (z*(x+y))))); ); return (0); } \\ Michel Marcus, Oct 10 2018
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Anton Deynega, Oct 09 2018
STATUS
approved