login
A104392
Sums of 2 distinct positive pentatope numbers (A000332).
8
6, 16, 20, 36, 40, 50, 71, 75, 85, 105, 127, 131, 141, 161, 196, 211, 215, 225, 245, 280, 331, 335, 336, 345, 365, 400, 456, 496, 500, 510, 530, 540, 565, 621, 705, 716, 720, 730, 750, 785, 825, 841, 925, 1002, 1006, 1016, 1036, 1045, 1071, 1127
OFFSET
0,1
COMMENTS
Pentatope number Ptop(n) = binomial(n+3,4) = n*(n+1)*(n+2)*(n+3)/24. Hyun Kwang Kim asserts that every positive integer can be represented as the sum of no more than 8 pentatope numbers; but in this sequence we are only concerned with sums of nonzero distinct pentatope numbers.
REFERENCES
Conway, J. H. and Guy, R. K. The Book of Numbers. New York: Springer-Verlag, pp. 55-57, 1996.
LINKS
Hyun Kwang Kim, On Regular Polytope Numbers, Proc. Amer. Math. Soc., 131 (2003), 65-75.
Eric Weisstein's World of Mathematics, Pentatope Number.
FORMULA
a(n) = Ptop(i) + Ptop(j) for some positive i=/=j and Ptop(n) = binomial(n+3,4).
MATHEMATICA
nn=15; Select[Union[Total/@Subsets[Binomial[Range[4, nn], 4], {2}]], #<Binomial[nn, 4]+1&] (* Harvey P. Dale, Mar 13 2011 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Jonathan Vos Post, Mar 05 2005
EXTENSIONS
Extended by Ray Chandler, Mar 05 2005
STATUS
approved