OFFSET
0,1
LINKS
T. D. Noe, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (13,-78,286,-715,1287,-1716,1716,-1287,715,-286,78,-13,1).
FORMULA
G.f.: -42*(5*x^2+12*x+5) / (x-1)^13. - Colin Barker, Jul 01 2015
From Amiram Eldar, Sep 06 2022: (Start)
Sum_{n>=0} 1/a(n) = 60*Pi^2 - 10445899/17640.
Sum_{n>=0} (-1)^n/a(n) = 447173/2205 - 2048*log(2)/7. (End)
MATHEMATICA
Table[Binomial[n+6, 6]Binomial[n+10, 6], {n, 0, 30}] (* or *) LinearRecurrence[ {13, -78, 286, -715, 1287, -1716, 1716, -1287, 715, -286, 78, -13, 1}, {210, 3234, 25872, 144144, 630630, 2312310, 7399392, 21237216, 55747692, 135795660, 310390080, 671571264, 1385115732}, 30] (* Harvey P. Dale, Apr 18 2019 *)
PROG
(PARI) a(n) = binomial(n+6, 6)*binomial(n+10, 6) \\ Colin Barker, Jul 01 2015
(PARI) Vec(-42*(5*x^2+12*x+5)/(x-1)^13 + O(x^30)) \\ Colin Barker, Jul 01 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Zerinvary Lajos, Apr 22 2005
STATUS
approved