login
A257711
Triangular numbers (A000217) that are the sum of seven consecutive triangular numbers.
7
210, 3486, 51681, 883785, 13125126, 224476266, 3333728685, 57016086141, 846753959226, 14481861401910, 215072171913081, 3678335779997361, 54627484911961710, 934282806257926146, 13875166095466359621, 237304154453733242085, 3524237560763543380386
OFFSET
1,1
FORMULA
G.f.: -21*x*(x^4-245*x^2+156*x+10) / ((x-1)*(x^2-16*x+1)*(x^2+16*x+1)).
16*a(n) = 104 +225*A157456(n+1) +7*(-1)^n*A159678(n+1). - R. J. Mathar, Apr 28 2020
EXAMPLE
210 is in the sequence because T(20) = 210 = 10+15+21+28+36+45+55 = T(4)+ ... +T(10).
MATHEMATICA
LinearRecurrence[{1, 254, -254, -1, 1}, {210, 3486, 51681, 883785, 13125126}, 30] (* Vincenzo Librandi, Jun 27 2015 *)
PROG
(PARI) Vec(-21*x*(x^4-245*x^2+156*x+10) / ((x-1)*(x^2-16*x+1)*(x^2+16*x+1)) + O(x^100))
KEYWORD
nonn,easy
AUTHOR
Colin Barker, May 05 2015
STATUS
approved