login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A103133
Decimal expansion of Dirichlet series L_{-7}(2).
5
1, 1, 5, 1, 9, 2, 5, 4, 7, 0, 5, 4, 4, 4, 9, 1, 0, 4, 7, 1, 0, 1, 6, 9, 2, 3, 9, 7, 3, 2, 0, 5, 4, 9, 9, 6, 4, 7, 9, 7, 8, 2, 1, 4, 0, 4, 6, 8, 6, 5, 6, 6, 9, 1, 4, 0, 8, 3, 9, 6, 8, 6, 3, 6, 1, 6, 6, 1, 2, 4, 1, 6, 3, 4, 5, 4, 5, 9, 1, 5, 4, 7, 5, 5, 6, 6, 7, 7, 5, 1, 9, 0, 6, 2, 9, 7, 2, 1, 2, 5, 3, 4
OFFSET
1,3
LINKS
Steven R. Finch, Mathematical Constants II, Encyclopedia of Mathematics and Its Applications, Cambridge University Press, Cambridge, 2018, p. 98-99.
R. J. Mathar, Table of Dirichlet L-series and prime zeta modulo functions for small moduli, arXiv:1008.2547 [math.NT], 2010-2015, L(m=7,r=4,s=2).
Eric Weisstein's World of Mathematics, Dirichlet L-Series.
FORMULA
(Psi(1, 1/7) + Psi(1, 2/7) - Psi(1, 3/7) + Psi(1, 4/7) - Psi(1, 5/7) - Psi(1, 6/7))/49, where Psi(1, x) is the polygamma function of order 1.
Equals Sum_{n>=1} A175629(n)/n^2. - R. J. Mathar, Jan 15 2021
Equals 1/(Product_{p prime == 1, 2 or 4 (mod 7)} (1 - 1/p^2) * Product_{p prime == 3, 5 or 6 (mod 7)} (1 + 1/p^2)). - Amiram Eldar, Dec 17 2023
EXAMPLE
1.151925470544491047...
MATHEMATICA
(PolyGamma[1, 1/7] + PolyGamma[1, 2/7] - PolyGamma[1, 3/7] + PolyGamma[1, 4/7] - PolyGamma[1, 5/7] - PolyGamma[1, 6/7])/49 // RealDigits[#, 10, 102]& // First
CROSSREFS
Sequence in context: A147326 A336048 A143114 * A098318 A360750 A293198
KEYWORD
nonn,cons
AUTHOR
Eric W. Weisstein, Jan 23 2005
EXTENSIONS
Formula updated by Jean-François Alcover, Apr 01 2015
STATUS
approved