OFFSET
0,1
COMMENTS
Gives those numbers which are Fibonacci numbers in A103135.
Generally, for any sequence where a(0)= Fibonacci(p), a(1) = F(p+q) and Lucas(q)*a(1) +- a(0) = F(p+2q), then a(n) = L(q)*a(n-1) +- a(n-2) generates the following Fibonacci sequence: a(n) = F(q(n)+p). So for this sequence, a(n) = 18*a(n-1) - a(n-2) = F(6n+4): q=6, because 18 is the 6th Lucas number (L(0) = 2, L(1)=1); F(4)=3, F(10)=55 and F(16)=987 (F(0)=0 and F(1)=1). See Lucas sequence A000032. This is a special case where a(0) and a(1) are increasing Fibonacci numbers and Lucas(m)*a(1) +- a(0) is another Fibonacci. - Bob Selcoe, Jul 08 2013
a(n) = x + y where x and y are solutions to x^2 = 5*y^2 - 1. (See related sequences with formula below.) - Richard R. Forberg, Sep 05 2013
LINKS
Colin Barker, Table of n, a(n) for n = 0..750
Tanya Khovanova, Recursive Sequences
Index entries for linear recurrences with constant coefficients, signature (18,-1).
FORMULA
G.f.: (x+3)/(x^2-18*x+1).
a(n) = 18*a(n-1) - a(n-2) for n>1; a(0)=3, a(1)=55. - Philippe Deléham, Nov 17 2008
a(n) = ((15-7*sqrt(5)+(9+4*sqrt(5))^(2*n)*(15+7*sqrt(5))))/(10*(9+4*sqrt(5))^n). - Colin Barker, Jan 24 2016
a(n) = S(3*n+1, 3) = 3*S(n,18) + S(n-1,18), with the Chebyshev S polynomials (A049310), S(-1, x) = 0, and S(n, 18) = A049660(n+1). - Wolfdieter Lang, May 08 2023
MATHEMATICA
Table[Fibonacci[6n+4], {n, 0, 30}]
LinearRecurrence[{18, -1}, {3, 55}, 20] (* Harvey P. Dale, Mar 29 2023 *)
Table[ChebyshevU[3*n+1, 3/2], {n, 0, 20}] (* Vaclav Kotesovec, May 27 2023 *)
PROG
(Magma) [Fibonacci(6*n +4): n in [0..100]]; // Vincenzo Librandi, Apr 17 2011
(PARI) a(n)=fibonacci(6*n+4) \\ Charles R Greathouse IV, Feb 05 2013
CROSSREFS
Subsequence of A033887.
Cf. A000032, A000045, A001906, A001519, A015448, A014445, A033888, A033889, A033890, A033891, A049310, A049660, A102312, A099100, A134490, A134491, A134492, A134493, A134494, A134495, A103134, A134497, A134498, A134499, A134500, A134501, A134502, A134503, A134504.
Cf. A103135.
KEYWORD
nonn,easy
AUTHOR
Creighton Dement, Jan 24 2005
EXTENSIONS
Edited by N. J. A. Sloane, Aug 10 2010
STATUS
approved