This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A175629 Legendre symbol (n,7). 10
 0, 1, 1, -1, 1, -1, -1, 0, 1, 1, -1, 1, -1, -1, 0, 1, 1, -1, 1, -1, -1, 0, 1, 1, -1, 1, -1, -1, 0, 1, 1, -1, 1, -1, -1, 0, 1, 1, -1, 1, -1, -1, 0, 1, 1, -1, 1, -1, -1, 0, 1, 1, -1, 1, -1, -1, 0, 1, 1, -1, 1, -1, -1, 0, 1, 1, -1, 1, -1, -1, 0, 1, 1, -1, 1, -1, -1, 0, 1, 1, -1, 1, -1, -1, 0, 1, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS This represents a non-principal Dirichlet character modulo 7. REFERENCES T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1986, page 139, k=7, Chi_2(n). LINKS Index entries for linear recurrences with constant coefficients, signature (-1,-1,-1,-1,-1,-1). FORMULA a(n) = a(n+7). |a(n)| = A109720(n). a(n) = -a(n-1) - a(n-2) - a(n-3) - a(n-4) - a(n-5) - a(n-6). G.f.: x*(1 + 2*x + x^2 + 2*x^3 + x^4)/(1 + x + x^2 + x^3 + x^4 + x^5 + x^6). a(n) == n^3 (mod 7). - Jianing Song, Jun 29 2018 MAPLE A := proc(n) numtheory[jacobi](n, 7) ; end proc: seq(A(n), n=0..120) ; MATHEMATICA LinearRecurrence[{-1, -1, -1, -1, -1, -1}, {0, 1, 1, -1, 1, -1}, 100] (* or *) PadRight[ {}, 100, {0, 1, 1, -1, 1, -1, -1}] (* Harvey P. Dale, Aug 02 2013 *) Table[JacobiSymbol[n, 7], {n, 0, 100}] (* Vincenzo Librandi, Jun 30 2018 *) PROG (MAGMA) &cat [[0, 1, 1, -1, 1, -1, -1]^^20]; // Vincenzo Librandi, Jun 30 2018 (PARI) a(n) = kronecker(n, 7); \\ Michel Marcus, Jan 28 2019 CROSSREFS Cf. A089509, A097343. The Legendre symbols (n,p): A091337 (p = 2, Kronecker symbol), A102283 (p = 3), A080891 (p = 5), this sequence (p = 7), A011582 (p = 11), A011583 (p = 13), ..., A011631 (p = 251), A165573 (p = 257), A165574 (p = 263). Also, many other sequences for p > 263 are in the OEIS. Moebius transform of A035182. Sequence in context: A211487 A101040 A306453 * A109720 A022932 A079421 Adjacent sequences:  A175626 A175627 A175628 * A175630 A175631 A175632 KEYWORD easy,mult,sign AUTHOR R. J. Mathar, Jul 29 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 24 06:56 EDT 2019. Contains 321444 sequences. (Running on oeis4.)