login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A103123
1/4-Smith numbers.
3
19899699, 36969999, 36999699, 39699969, 39999399, 39999993, 66699699, 66798798, 67967799, 67987986, 69759897, 69889389, 69966699, 69996993, 76668999, 79488798, 79866798, 85994799, 86686886, 89769759, 89866568
OFFSET
1,1
LINKS
Shyam Sunder Gupta, Smith Numbers.
Wayne L. McDaniel, The Existence of infinitely Many k-Smith numbers, Fibonacci Quarterly, Vol. 25, No. 1 (1987), pp. 76-80.
EXAMPLE
19899699 is a 4^(-1) Smith number because the digit sum of 19899699, i.e., S(19899699) = 1 + 9 + 8 + 9 + 9 + 6 + 9 + 9 = 60, which is equal to 4 times the sum of the digits of its prime factors, i.e., 4*Sp(19899699) = 4*Sp (3*2203*3011) = 4*(3 + 2 + 2 + 0 + 3 + 3 + 0 + 1 + 1) = 15.
MATHEMATICA
digSum[n_] := Plus @@ IntegerDigits[n]; qSmithQ[n_] := CompositeQ[n] && 4 * Plus @@ (Last@# * digSum[First@#] & /@ FactorInteger[n]) == digSum[n]; Select[Range[10^8], qSmithQ] (* Amiram Eldar, Aug 23 2020 *)
CROSSREFS
Cf. A006753.
Sequence in context: A284101 A303448 A251513 * A107618 A050945 A251458
KEYWORD
base,nonn
AUTHOR
Shyam Sunder Gupta, Mar 16 2005
STATUS
approved