

A103123


1/4Smith numbers.


2



19899699, 36969999, 36999699, 39699969, 39999399, 39999993, 66699699, 66798798, 67967799, 67987986, 69759897, 69889389, 69966699, 69996993, 76668999, 79488798, 79866798, 85994799, 86686886, 89769759, 89866568
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


REFERENCES

McDaniel, W.L., "The Existence of infinitely Many k Smith numbers", Fibonacci Quarterly, 25(1987), pp. 7680.


LINKS

Table of n, a(n) for n=1..21.
S.S.Gupta, Smith Numbers.


EXAMPLE

19899699 is a 4^(1) Smith number because the digit sum of 19899699, i.e., S(19899699) = 1 + 9 + 8 + 9 + 9 + 6 + 9 + 9 = 60, which is equal to 4 times the sum of the digits of its prime factors, i.e., 4*Sp(19899699) = 4*Sp (3*2203*3011) = 4*(3 + 2 + 2 + 0 + 3 + 3 + 0 + 1 + 1) = 15.


CROSSREFS

Cf. A006753.
Sequence in context: A284101 A303448 A251513 * A107618 A050945 A251458
Adjacent sequences: A103120 A103121 A103122 * A103124 A103125 A103126


KEYWORD

base,nonn


AUTHOR

Shyam Sunder Gupta, Mar 16 2005


STATUS

approved



