

A103126


5Smith numbers.


1



2030, 10203, 12110, 20210, 20310, 21004, 21010, 24000, 24010, 31010, 41001, 50010, 70000, 100004, 100012, 100210, 100310, 100320, 101020, 101041, 102022, 103200, 104010, 104101, 104110, 105020, 106001, 110020, 110202, 110212, 110400, 111013
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


LINKS

Table of n, a(n) for n=1..32.
S. S. Gupta, Smith Numbers.
W. L. McDaniel, The Existence of infinitely Many kSmith numbers, Fibonacci Quarterly, 25(1987), pp. 7680.


EXAMPLE

2030 is a 5 Smith number because the sum of the digits of its prime factors, i.e., Sp(2030) = Sp(2*5*7*29) = 2 + 5 + 7 + 2 + 9 = 25, which is equal to 5 times the digit sum of 2030, i.e., 5*S(2030) = 5*(2 + 0 + 3 + 0) = 25.


CROSSREFS

Cf. A006753.
Sequence in context: A031543 A031723 A145721 * A045869 A098808 A212477
Adjacent sequences: A103123 A103124 A103125 * A103127 A103128 A103129


KEYWORD

base,nonn


AUTHOR

Shyam Sunder Gupta, Mar 16 2005


STATUS

approved



