login
A102763
a(1) = a(2) = 2, a(3) = 4; if n is even set a(n+1) = a([2n/5])+2, otherwise a(n+1) = a([3n/5]).
1
2, 2, 4, 2, 4, 4, 4, 2, 6, 4, 4, 4, 4, 4, 6, 6, 6, 4, 6, 4, 4, 4, 4, 4, 8, 6, 6, 6, 6, 6, 6, 4, 6, 6, 6, 4, 6, 4, 8, 4, 8, 4, 8, 8, 8, 6, 6, 6, 8, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 4, 6, 6, 10, 8, 8, 4, 8, 8, 8, 4, 8, 8, 8, 8, 8, 6, 8, 6, 6, 6, 6, 8, 8, 6, 8, 6, 8, 6, 6, 6, 6, 6, 8, 6, 6, 6, 10, 6, 6, 6, 6, 6
OFFSET
1,1
REFERENCES
Mauldin, R. Daniel; Ulam, S. M.; Mathematical problems and games. Adv. in Appl. Math. 8 (1987), 281-344.
LINKS
R. D. Mauldin, S. M. Ulam, Mathematical problems and games, Adv. Appl. Math. 8 (3) (1987) 281-344, section II.14. [From R. J. Mathar, Aug 01 2009]
MAPLE
A102763 := proc(n) option remember ; if n <=3 then op(n, [2, 2, 4]) ; elif n mod 2 = 1 then 2+procname(floor(2*(n-1)/5)) ; else procname(floor(3*(n-1)/5)) ; fi; end: seq(A102763(n), n=1..120) ; # R. J. Mathar, Aug 01 2009
CROSSREFS
Sequence in context: A082991 A214212 A100008 * A054844 A057936 A033097
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Jul 30 2009
EXTENSIONS
More terms from R. J. Mathar, Aug 01 2009
STATUS
approved