OFFSET
0,1
COMMENTS
For any integer n>=0, 2 * Integral_{t=-2..2} T_n(t/2)*exp(-t)*dt = 4 * Integral_{z=-1..1} T_n(z)*exp(-2*z)*dz = a(n)*exp(2) - A300484(n)*exp(-2). - Max Alekseyev, Mar 08 2018
REFERENCES
J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 197.
LINKS
Vladimir Shevelev, Spectrum of permanent's values and its extremal magnitudes in Λ_n^3 and Λ_n(α,β,γ), arXiv:1104.4051 [math.CO], 2011.
FORMULA
a(n) = A335391(0,n) (Touchard). - William P. Orrick, Aug 29 2020
PROG
(PARI) { A102761(n) = subst( serlaplace( 2*polchebyshev(n, 1, (x-2)/2)), x, 1); } \\ Max Alekseyev, Mar 06 2018
CROSSREFS
Row m=2 in A300481.
A000179, A102761, and A335700 are all essentially the same sequence but with different conventions for the initial terms a(0) and a(1). - N. J. A. Sloane, Aug 06 2020
KEYWORD
sign,easy
AUTHOR
N. J. A. Sloane, Apr 04 2010, following a suggestion from Vladimir Shevelev
EXTENSIONS
Changed a(0)=2 (making the sequence more consistent with existing formulae) by Max Alekseyev, Mar 06 2018
STATUS
approved