This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A101975 Triangle read by rows: number of Dyck paths of semilength n with k peaks after the first return (0<= k
 1, 1, 1, 2, 2, 1, 5, 4, 4, 1, 14, 9, 11, 7, 1, 42, 23, 27, 28, 11, 1, 132, 65, 66, 87, 62, 16, 1, 429, 197, 170, 239, 250, 122, 22, 1, 1430, 626, 471, 627, 829, 630, 219, 29, 1, 4862, 2056, 1398, 1656, 2448, 2553, 1419, 366, 37, 1, 16796, 6918, 4381, 4554, 6803, 8813 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,4 REFERENCES E. Deutsch, Dyck path enumeration, Discrete Math., 204, 1999, 167-202. LINKS FORMULA T(n, 0)=c(n-1), T(n, 1) = sum(c(i), i=0..n-2), T(n, k)= sum(c(j)*binomial(n-1-j, k-1)*binomial(n-1-j, k)/(n-1-j), j=0..n-2) for k>=2, where c(i)=binomial(2i, i)/(i+1) (i=0, 1, ...) are the Catalan numbers (A000108). EXAMPLE T(4,2)=4 because we have UD|(UD)U(UD)D, UD|U(UD)D(UD), UD|U(UD)(UD)D and UUDD|(UD)(UD), where U=(1,1), D=(1,-1) (the two peaks after the first return | are shown between parentheses). Triangle begins: 1; 1,1; 2,2,1; 5,4,4,1; 14,9,11,7,1; 42,23,27,28,11,1; MAPLE c:=n->binomial(2*n, n)/(n+1):T:=proc(n, k) if k=0 then c(n-1) elif k=1 then sum(c(i), i=0..n-2) else sum(c(j)*binomial(n-1-j, k-1)*binomial(n-1-j, k)/(n-1-j), j=0..n-2) fi end: for n from 1 to 11 do seq(T(n, k), k=0..n-1) od; # yields the sequence in triangular form CROSSREFS Cf. A000108, A014137, A101974. Sequence in context: A276067 A125177 A125178 * A136388 A099605 A288421 Adjacent sequences:  A101972 A101973 A101974 * A101976 A101977 A101978 KEYWORD nonn,tabl AUTHOR Emeric Deutsch, Dec 22 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 21 10:00 EDT 2019. Contains 321368 sequences. (Running on oeis4.)