OFFSET
1,3
COMMENTS
Numbers n such that (270*10^n - 63)/9 is prime.
Numbers n such that digit 2 followed by n >= 0 occurrences of digit 9 followed by digit 3 is prime.
Numbers corresponding to terms <= 864 are certified primes.
a(21) > 10^5. - Robert Price, Jan 25 2015
a(24) > 2*10^5. - Robert Price, Aug 09 2015
REFERENCES
Klaus Brockhaus and Walter Oberschelp, Zahlenfolgen mit homogenem Ziffernkern, MNU 59/8 (2006), pp. 462-467.
LINKS
FORMULA
a(n) = A102964(n) - 1.
EXAMPLE
293 is prime, hence 1 is a term.
MATHEMATICA
Select[Range[0, 200000], PrimeQ[(270*10^# - 63)/9] &] (* Robert Price, Aug 09 2015 *)
PROG
(PARI) a=23; for(n=0, 1500, if(isprime(a), print1(n, ", ")); a=10*a+63)
(PARI) for(n=0, 1500, if(isprime((270*10^n-63)/9), print1(n, ", ")))
CROSSREFS
KEYWORD
nonn,hard,more
AUTHOR
Klaus Brockhaus and Walter Oberschelp (oberschelp(AT)informatik.rwth-aachen.de), Dec 23 2004
EXTENSIONS
More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Jan 02 2008
a(12)-a(20) derived from A102964 by Robert Price, Jan 25 2015
a(21)-a(23) derived from A102964 by Robert Price, Aug 09 2015
STATUS
approved