OFFSET
0,8
COMMENTS
Sequence appears to have a rational g.f. - Ralf Stephan, May 17 2007
The conjecture is wrong. The g.f. is dependent on the number of terms. - Johannes W. Meijer, Aug 08 2011
FORMULA
G.f.: 1/(1 + x/(1 + x^2/(1 + x^4/(1 + x^8/(1 + ...))))) (continued fraction). - Joerg Arndt, Oct 19 2012
G.f. A(x) = 1/B(x) where B(x) is the g.f. of A218031. - Joerg Arndt, Oct 19 2012
a(0) = 1; a(n) = -Sum_{k=0..floor((n-1)/2)} a(k) * a(n-2*k-1). - Ilya Gutkovskiy, Mar 01 2022
MAPLE
nmax:=57: kmax:=nmax: for k from 0 to kmax do A:= proc(x): add(A101912(n)*x^n, n=0..k) end: f(x):=series(1/(1 + x*A(x^2)), x, k+1); for n from 0 to k do x(n):=coeff(f(x), x, n) od: A101912(k):=x(k): od: seq(A101912(n), n=0..nmax); # Johannes W. Meijer, Aug 08 2011
MATHEMATICA
m = 58; A[_] = 0; Do[A[x_] = 1/(1 + x A[x^2]) + O[x]^m // Normal, {m}]; CoefficientList[A[x], x] (* Jean-François Alcover, Nov 03 2019 *)
PROG
(PARI) {a(n)=local(A); A=1-x; for(i=1, n\2+1, A=1/(1+x*subst(A, x, x^2)+x*O(x^n))); polcoeff(A, n, x)}
(PARI) {a(n)=local(M=contfracpnqn(concat(1, vector(#binary(n)+1, n, 1/x^(2^(n-1)))))); polcoeff(M[1, 1]/M[2, 1]+x*O(x^(3*n+1)), 3*n+1)}
CROSSREFS
KEYWORD
sign
AUTHOR
Paul D. Hanna, Dec 20 2004
STATUS
approved