

A117938


Triangle, columns generated from Lucas Polynomials.


3



1, 1, 1, 1, 2, 3, 1, 3, 6, 4, 1, 4, 11, 14, 7, 1, 5, 18, 36, 34, 11, 1, 6, 27, 76, 119, 82, 18, 1, 7, 38, 140, 322, 393, 198, 29, 1, 8, 51, 234, 727, 1364, 1298, 478, 47, 1, 9, 66, 364, 1442, 3665, 3778, 4287, 1154, 76
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,5


COMMENTS

Companion triangle using Fibonacci polynomial generators = A073133. Inverse binomial transforms of the columns defines rows of A117937 (with some adjustments of offset).


LINKS

Table of n, a(n) for n=1..55.


FORMULA

Columns are f(x), x = 1,2,3..., of the Lucas Polynomials: (1, defined different from A034807 and A114525); (x); (x^2 + 2); (x^3 + 3x); (x^4 + 4x^2 + 2); (x^5 + 5x^3 + 5x); (x^6 + 6x^4 + 9x^2 + 2); (x^7 + 7x^5 + 14x^3 + 7x);...


EXAMPLE

First few rows of the triangle are:
1;
1, 1;
1, 2, 3;
1, 3, 6, 4;
1, 4, 11, 14, 7;
1, 5, 18, 36, 34, 11;
1, 6, 27, 76, 119, 82, 18;
1, 7, 38, 140, 322, 393, 198, 29;
...
For example, T(7,4) = 76 = f(4), x^3 + 3x = 64 + 12 = 76.


CROSSREFS

Cf. A073133, A117936, A117937.
Sequence in context: A152976 A153861 A118981 * A256193 A101912 A208522
Adjacent sequences: A117935 A117936 A117937 * A117939 A117940 A117941


KEYWORD

nonn,tabl


AUTHOR

Gary W. Adamson, Apr 03 2006


STATUS

approved



