OFFSET
0,4
COMMENTS
Transform of F(n) under the mapping g(x)-> (1/(1-x))g(x^2/((1-x)^2). Binomial transform of aerated Fibonacci numbers 0,0,1,0,1,0,2,0,3,0,5,...
F(n) may be recovered as Sum_{k=0..2*n} Sum_{j=0..k} C(0,2*n-k)*C(k,j)*(-1)^(k-j)*a(j). - Paul Barry, Jun 10 2005
LINKS
M. Abrate, S. Barbero, U. Cerruti, N. Murru, Fixed Sequences for a Generalization of the Binomial Interpolated Operator and for some Other Operators, J. Int. Seq. 14 (2011) # 11.8.1.
Index entries for linear recurrences with constant coefficients, signature (4,-5,2,1).
FORMULA
G.f.: x^2*(1-x)/(1-4*x+5*x^2-2*x^3-x^4).
a(n) = 4*a(n-1)-5*a(n-2)+2*a(n-3)+a(n-4).
a(n) = Sum_{k=0..n} binomial(n, k)*Fibonacci(k/2)*(1+(-1)^k)/2.
MATHEMATICA
LinearRecurrence[{4, -5, 2, 1}, {0, 0, 1, 3}, 40] (* Harvey P. Dale, Jul 19 2018 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Dec 20 2004
STATUS
approved