login
A101893
a(n) = sum_{k=0..floor(n/2)} C(n,2k)*Pell(k).
2
0, 0, 1, 3, 8, 20, 50, 126, 320, 816, 2084, 5324, 13600, 34736, 88712, 226552, 578560, 1477504, 3773200, 9635888, 24607872, 62842944, 160486688, 409846752, 1046656000, 2672922880, 6826040896, 17432165568, 44517810688, 113688426240
OFFSET
0,4
COMMENTS
Transform of Pell numbers under the mapping g(x)-> (1/(1-x))g(x^2/((1-x)^2).
Binomial transform of aerated Pell numbers 0,0,1,0,2,0,5,0,12,...
FORMULA
G.f.: x^2*(1-x)/(1 - 4*x + 4*x^2 - 2*x^4).
a(n) = 4*a(n-1) - 4*a(n-2) + 2*a(n-4).
a(n) = sum_{k=0..n} binomial(n, k) * A000129(k/2) * (1+(-1)^k)/2.
MATHEMATICA
CoefficientList[Series[x^2*(1-x)/(1 - 4*x + 4*x^2 - 2*x^4), {x, 0, 40}], x] (* Vaclav Kotesovec, Jan 05 2015 *)
LinearRecurrence[{4, -4, 0, 2}, {0, 0, 1, 3}, 30] (* Harvey P. Dale, Aug 05 2018 *)
CROSSREFS
Cf. A000129 (Pell numbers), A135248 (partial sums).
Sequence in context: A122595 A026582 A187003 * A140662 A174198 A077997
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Dec 22 2004
STATUS
approved