OFFSET
0,4
COMMENTS
Transform of A001045 under the mapping g(x)-> (1/(1-x))g(x^2/((1-x)^2). Binomial transform of aerated Jacobsthal numbers 0,0,1,0,1,0,3,0,5,0,11,...
J(n) may be recovered as Sum_{k=0..2*n} Sum_{j=0..k} C(0,2*n-k)*C(k,j)*(-1)^(k-j)*a(j). - Paul Barry, Jun 10 2005
LINKS
Index entries for linear recurrences with constant coefficients, signature (4,-5,2,2).
FORMULA
G.f.: x^2*(1 - x)/((1 - 2*x - x^2)*(1 - 2*x + 2*x^2)).
a(n) = 4*a(n-1) - 5*a(n-2) + 2*a(n-3) + 2*a(n-4).
a(n) = Sum_{k=0..n} binomial(n, k)*A001045(k/2)*(1+(-1)^k)/2.
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Dec 22 2004
STATUS
approved