OFFSET
1,1
COMMENTS
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 1..1000
Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
FORMULA
G.f.: x*(6 - 6*x + x^2)/(x - 1)^4. - R. J. Mathar, Dec 06 2011
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Vincenzo Librandi, Jun 26 2012
E.g.f.: exp(x)*x*(36 + 18*x + x^2)/6. - Stefano Spezia, Oct 14 2022
EXAMPLE
Left column the third row of A008292, and subsequent columns defined as partial sums along their preceding neighbors:
1 1 1 1 1 1 1 1 1 1 1
4 5 6 7 8 9 10 11 12 13 14
1 6 12 19 27 36 46 57 69 82 96 A051936
0 6 18 37 64 100 146 203 272 354 450 A101853
0 6 24 61 125 225 371 574 846 1200 1650 A101854
0 6 30 91 216 441 812 1386 2232 3432 5082 A101855
0 6 36 127 343 784 1596 2982 5214 8646 13728
0 6 42 169 512 1296 2892 5874 11088 19734 33462
0 6 48 217 729 2025 4917 10791 21879 41613 75075
...
MATHEMATICA
LinearRecurrence[{4, -6, 4, -1}, {6, 18, 37, 64}, 40] (* or *) CoefficientList[Series[(6-6*x+x^2)/(x-1)^4, {x, 0, 40}], x] (* Vincenzo Librandi, Jun 26 2012 *)
PROG
(Magma) I:=[6, 18, 37, 64]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..40]]; // Vincenzo Librandi, Jun 26 2012
(PARI) a(n)=n*(20+15*n+n^2)/6 \\ Charles R Greathouse IV, Oct 16 2015
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Cecilia Rossiter (cecilia(AT)noticingnumbers.net), Dec 18 2004
STATUS
approved