login
A101853
a(n) = n*(20 + 15*n + n^2)/6.
4
6, 18, 37, 64, 100, 146, 203, 272, 354, 450, 561, 688, 832, 994, 1175, 1376, 1598, 1842, 2109, 2400, 2716, 3058, 3427, 3824, 4250, 4706, 5193, 5712, 6264, 6850, 7471, 8128, 8822, 9554, 10325, 11136, 11988, 12882, 13819, 14800
OFFSET
1,1
COMMENTS
4th partial summation within series as series accumulate n times from an initial sequence of Euler Triangle's row 3: 1,4,1. The 1,4,1 is the left column, A101101 the second column, A008458 the third, A003215 the fourth column etc of the array in the example. a(n) is the 4th row.
FORMULA
G.f.: x*(6 - 6*x + x^2)/(x - 1)^4. - R. J. Mathar, Dec 06 2011
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Vincenzo Librandi, Jun 26 2012
E.g.f.: exp(x)*x*(36 + 18*x + x^2)/6. - Stefano Spezia, Oct 14 2022
EXAMPLE
Left column the third row of A008292, and subsequent columns defined as partial sums along their preceding neighbors:
1 1 1 1 1 1 1 1 1 1 1
4 5 6 7 8 9 10 11 12 13 14
1 6 12 19 27 36 46 57 69 82 96 A051936
0 6 18 37 64 100 146 203 272 354 450 A101853
0 6 24 61 125 225 371 574 846 1200 1650 A101854
0 6 30 91 216 441 812 1386 2232 3432 5082 A101855
0 6 36 127 343 784 1596 2982 5214 8646 13728
0 6 42 169 512 1296 2892 5874 11088 19734 33462
0 6 48 217 729 2025 4917 10791 21879 41613 75075
...
MATHEMATICA
LinearRecurrence[{4, -6, 4, -1}, {6, 18, 37, 64}, 40] (* or *) CoefficientList[Series[(6-6*x+x^2)/(x-1)^4, {x, 0, 40}], x] (* Vincenzo Librandi, Jun 26 2012 *)
PROG
(Magma) I:=[6, 18, 37, 64]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..40]]; // Vincenzo Librandi, Jun 26 2012
(PARI) a(n)=n*(20+15*n+n^2)/6 \\ Charles R Greathouse IV, Oct 16 2015
CROSSREFS
Row n=3 of A255961.
Sequence in context: A202366 A185223 A299272 * A132432 A005899 A261652
KEYWORD
easy,nonn
AUTHOR
Cecilia Rossiter (cecilia(AT)noticingnumbers.net), Dec 18 2004
STATUS
approved