OFFSET
0,3
COMMENTS
Numbers both square and cubic. - Patrick De Geest
Totally multiplicative sequence with a(p) = p^6 for prime p. - Jaroslav Krizek, Nov 01 2009
Numbers n for which the order of the torsion subgroup of the elliptic curve y^2 = x^3 + n is t = 6, cf. Gebel link. - Artur Jasinski, Jun 30 2010
Note that Sum_{n>=1} 1/a(n) = Pi^6 / 945. - Mohammad K. Azarian, Nov 01 2011
The binomial transform yields A056468. The inverse binomial transform yields the (finite) 0, 1, 62, 540, ..., 720, the 6th row in A019538 and A131689. - R. J. Mathar, Jan 16 2013
For n > 0, a(n) is the largest number k such that k + n^3 divides k^2 + n^3. - Derek Orr, Oct 01 2014
REFERENCES
R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 255; 2nd. ed., p. 269. Worpitzky's identity, eq. (6.37).
Granino A. Korn and Theresa M.Korn, Mathematical Handbook for Scientists and Engineers, McGraw-Hill Book Company, New York (1968), p. 982.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Franklin T. Adams-Watters, Table of n, a(n) for n = 0..500
Henry Bottomley, Illustration of initial terms
J. Gebel, Integer points on Mordell curves [Cached copy, after the original web site tnt.math.se.tmu.ac.jp was shut down in 2017]
Richard J. Mathar, Construction of Bhaskara pairs, arXiv:1703.01677 [math.NT], 2017.
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1).
FORMULA
G.f.: -x*(1+x)*(x^4+56*x^3+246*x^2+56*x+1) / (x-1)^7. - Simon Plouffe in his 1992 dissertation
Multiplicative with a(p^e) = p^(6e). - David W. Wilson, Aug 01 2001
E.g.f.: (x + 31x^2 + 90x^3 + 65x^4 + 15x^5 + x^6)*exp(x). Generally, the e.g.f. for n^m is Sum_{k=1..m} A008277(m,k)*x^k*exp(x). - Geoffrey Critzer, Aug 25 2013
From Ant King, Sep 23 2013: (Start)
Signature {7, -21, 35, -35, 21, -7, 1}.
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) + 720. (End)
a(n) == 1 (mod 7) if gcd(n, 7) = 1, otherwise a(n) == 0 (mod 7). See A109720. - Jake Lawrence, May 28 2016
From Ilya Gutkovskiy, Jul 06 2016: (Start)
Dirichlet g.f.: zeta(s-6).
Sum_{n>=1} 1/a(n) = Pi^6/945 = A013664. (End)
a(n) = Sum_{k=1..6} Eulerian(6, k)*binomial(n+6-k, 6), with Eulerian(6, k) = A008292(6, k) (the numbers are 1, 57, 302, 302, 57, 1) for n >= 0. Worpitzki's identity for powers of 6. See. e.g., Graham et al., eq. (6, 37) (using A173018, the row reversed version of A123125). - Wolfdieter Lang, Jul 17 2019
Sum_{n>=1} (-1)^(n+1)/a(n) = 31*zeta(6)/32 = 31*Pi^6/30240 (A275703). - Amiram Eldar, Oct 08 2020
From Amiram Eldar, Jan 20 2021: (Start)
Product_{n>=1} (1 + 1/a(n)) = (cosh(Pi)-cos(sqrt(3)*Pi))*sinh(Pi)/(2*Pi^3).
Product_{n>=2} (1 - 1/a(n)) = cosh(sqrt(3)*Pi/2)^2/(6*Pi^2). (End)
EXAMPLE
The 6th powers of the first few integers are: 0^6 = 0 = a(0), 1^6 = 1 = a(1), 2^6 = 64 = a(2), 3^6 = 9^3 = 729 = a(3), 4^6 = 2^12 = 4096 = a(4), 5^6 = 25^3 = 15625 = a(5), etc.
MATHEMATICA
Table[n^6, {n, 0, 40}] (* Vladimir Joseph Stephan Orlovsky, Feb 19 2010 *)
PROG
(Haskell)
a001014 n = a001014_list !! n
a001014_list = map (^ 6) [0..] -- Reinhard Zumkeller, Dec 04 2011
(Maxima) A001014(n):=n^6$
makelist(A001014(n), n, 0, 30); /* Martin Ettl, Nov 05 2012 */
(PARI) a(n)=n^6 \\ Charles R Greathouse IV, Sep 24 2015
CROSSREFS
Subsequence of A201217.
KEYWORD
nonn,easy,mult
AUTHOR
EXTENSIONS
Comments from 2010 - 2011 edited by M. F. Hasler, Jul 05 2024
STATUS
approved