This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A101103 Partial sums of A101104. First differences of A005914. 6
 1, 13, 36, 60, 84, 108, 132, 156, 180, 204, 228, 252, 276, 300, 324, 348, 372, 396, 420, 444, 468, 492, 516, 540, 564, 588, 612, 636, 660, 684, 708, 732, 756, 780, 804, 828, 852, 876, 900, 924, 948, 972, 996, 1020, 1044, 1068, 1092, 1116, 1140, 1164, 1188, 1212, 1236, 1260 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS For more information, cross-references etc., see A101104. For n >= 3, a(n) is equal to the number of functions f:{1,2,3,4}->{1,2,...,n} such that Im(f) contains 3 fixed elements. - Aleksandar M. Janjic and Milan Janjic, Mar 08 2007 LINKS G. C. Greubel, Table of n, a(n) for n = 1..5000 Milan Janjic, Enumerative Formulas for Some Functions on Finite Sets C. J. Pita Ruiz V., Some Number Arrays Related to Pascal and Lucas Triangles, J. Int. Seq. 16 (2013) #13.5.7. Index entries for linear recurrences with constant coefficients, signature (2, -1). FORMULA a(n) = 2*a(n-1) - a(n-2), n > 4. G.f.: x*(1+x)*(1 + 10*x + x^2)/(1-x)^2. a(n) = 24*n - 36, n >= 3. a(n) = Sum_{j=0..n} (-1)^j*binomial(3, j)*(n - j)^4. [Indices shifted, Nov 01 2010] a(n) = Sum_{i=1..4} A008292(4,i)*binomial(n-i+1,1). [Indices shifted, Nov 01 2010] MAPLE seq(coeff(series(x*(1+x)*(1+10*x+x^2)/(1-x)^2, x, n+1), x, n), n = 1 .. 60); # Muniru A Asiru, Dec 02 2018 MATHEMATICA MagicNKZ=Sum[(-1)^j*Binomial[n+1-z, j]*(k-j+1)^n, {j, 0, k+1}]; Table[MagicNKZ, {n, 4, 4}, {z, 2, 2}, {k, 0, 34}] OR SeriesAtLevelR = Sum[Eulerian[n, i - 1]*Binomial[n + x - i + r, n + r], {i, 1, n}]; Table[SeriesAtLevelR, {n, 4, 4}, {r, -3, -3}, {x, 3, 35}] Join[{1, 13}, LinearRecurrence[{2, -1}, {36, 60}, 33]] (* Ray Chandler, Sep 23 2015 *) PROG (PARI) my(x='x+O('x^60)); Vec(x*(1+x)*(1+10*x+x^2)/(1-x)^2) \\ G. C. Greubel, Dec 01 2018 (MAGMA) I:=[36, 60]; [1, 13] cat [n le 2 select I[n] else 2*Self(n-1) - Self(n-2): n in [1..30]]; // G. C. Greubel, Dec 01 2018 (Sage) s=(x*(1+x)*(1+10*x+x^2)/(1-x)^2).series(x, 30); s.coefficients(x, sparse=False) # G. C. Greubel, Dec 01 2018 (GAP) Concatenation([1, 13], List([3..60], n->24*n-36)); # Muniru A Asiru, Dec 02 2018 CROSSREFS Cf. A073762. Sequence in context: A272108 A034119 A054285 * A051865 A081928 A034129 Adjacent sequences:  A101100 A101101 A101102 * A101104 A101105 A101106 KEYWORD easy,nonn AUTHOR Cecilia Rossiter (cecilia(AT)noticingnumbers.net), Dec 15 2004 EXTENSIONS Removed redundant information already in A101104. Reduced formulas by expansion of constants - R. J. Mathar, Nov 01 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 15 20:00 EST 2019. Contains 330000 sequences. (Running on oeis4.)