The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A100736 Inverse modulo 2 binomial transform of 3^n. 1
 1, 2, 8, 16, 80, 160, 640, 1280, 6560, 13120, 52480, 104960, 524800, 1049600, 4198400, 8396800, 43046720, 86093440, 344373760, 688747520, 3443737600, 6887475200, 27549900800, 55099801600, 282386483200, 564772966400 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS 3^n may be retrieved as Sum_{k=0..n} (binomial(n,k) mod 2)*A100736(k). LINKS FORMULA a(n) = Sum_{k=0..n} (-1)^A010060(n-k)*(binomial(n, k) mod 2)*3^k. PROG (PARI) a(n)=abs(sum(k=0, n, (-1)^(hammingweight(k)%2)* lift(Mod(binomial(n, k), 2))*3^k)) \\ Jianing Song, Jan 27 2019 CROSSREFS Cf. A010060, A100735. Sequence in context: A094014 A098232 A195798 * A099888 A249308 A199043 Adjacent sequences:  A100733 A100734 A100735 * A100737 A100738 A100739 KEYWORD easy,nonn AUTHOR Paul Barry, Dec 06 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 8 08:48 EDT 2020. Contains 333313 sequences. (Running on oeis4.)