login
A098232
Largest power of 2 <= 3^n.
2
1, 2, 8, 16, 64, 128, 512, 2048, 4096, 16384, 32768, 131072, 524288, 1048576, 4194304, 8388608, 33554432, 67108864, 268435456, 1073741824, 2147483648, 8589934592, 17179869184, 68719476736, 274877906944, 549755813888, 2199023255552, 4398046511104, 17592186044416
OFFSET
0,2
FORMULA
a(n) = 2^floor(n*log_2(3)) = A000079(A056576(n)) = A000244(n)-A056577(n).
EXAMPLE
a(4)=64 since 3^4=81 and 64 <= 81 < 128.
MAPLE
A098232:=n->2^floor(n*log[2](3)): seq(A098232(n), n=0..30); # Wesley Ivan Hurt, Mar 12 2015
PROG
(PARI) a(n) = 2^logint(3^n, 2); \\ Michel Marcus, Sep 06 2022
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Henry Bottomley, Oct 25 2004
STATUS
approved