login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A100294
Numbers of the form a^5 + b^4 with a, b > 0.
10
2, 17, 33, 48, 82, 113, 244, 257, 259, 288, 324, 499, 626, 657, 868, 1025, 1040, 1105, 1280, 1297, 1328, 1539, 1649, 2320, 2402, 2433, 2644, 3126, 3141, 3206, 3381, 3425, 3750, 4097, 4128, 4339, 4421, 5120, 5526, 6562, 6593, 6804, 7221, 7585, 7777, 7792
OFFSET
1,1
COMMENTS
In view of computing A300566, it would be interesting to have an efficient way to check whether a given (large) n is in this sequence. - M. F. Hasler, Apr 25 2018
MATHEMATICA
lst={}; Do[p=a^5+b^4; If[p<15000, AppendTo[lst, p]], {a, 16}, {b, 32}]; Union[lst]
PROG
(PARI) A100294_vec(L=10^6, k=4, m=5, S=List())={for(a=1, sqrtnint(L-1, m), for(b=1, sqrtnint(L-a^m, k), listput(S, a^m+b^k))); Set(S)} \\ all terms up to limit L. - M. F. Hasler, Apr 25 2018
(PARI) is(n, k=4, m=5)=for(a=1, sqrtnint(n-1, m), ispower(n-a^m, k) && return(a)) \\ Returns a > 0 if n is in the sequence, or 0 otherwise. - M. F. Hasler, Apr 25 2018
CROSSREFS
Cf. A100274 (primes of the form a^5 + b^4).
Subsequence of A100292 (a^5 + b^2); see also A055394 (a^2 + b^3), A111925 (a^2 + b^4), A100291 (a^4 + b^3), A100293 (a^5 + b^3), A303372 (a^2 + b^6), A303373 (a^3 + b^6), A303374 (a^4 + b^6), A303375 (a^5 + b^6).
Roots of 6th powers are listed in A300566 (z such that z^6 = x^5 + y^4 for some x, y >= 1); see also A300564 (z^4 = x^3 + y^2) and A242183, A300565 (z^5 = x^4 + y^3), A300567 (z^7 = x^6 + y^5), A302174.
Sequence in context: A178145 A055261 A307690 * A192453 A284779 A018529
KEYWORD
nonn
AUTHOR
T. D. Noe, Nov 18 2004
STATUS
approved