login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A100221
Decimal expansion of Product_{k>=1} (1-1/4^k).
18
6, 8, 8, 5, 3, 7, 5, 3, 7, 1, 2, 0, 3, 3, 9, 7, 1, 5, 4, 5, 6, 5, 1, 4, 3, 5, 7, 2, 9, 3, 5, 0, 8, 1, 8, 4, 6, 7, 5, 5, 4, 9, 8, 1, 9, 3, 7, 8, 3, 3, 5, 7, 3, 5, 3, 4, 0, 1, 5, 7, 2, 3, 2, 5, 7, 7, 5, 3, 3, 1, 9, 8, 4, 5, 0, 7, 9, 8, 6, 7, 5, 1, 2, 4, 8, 0, 3, 3, 4, 6, 0, 4, 8, 1, 4, 2, 8, 8, 7, 9, 0, 5
OFFSET
0,1
LINKS
Richard J. McIntosh, Some Asymptotic Formulae for q-Hypergeometric Series, Journal of the London Mathematical Society, Vol. 51, No. 1 (1995), pp. 120-136; alternative link.
Eric Weisstein's World of Mathematics, Infinite Product.
Eric Weisstein's World of Mathematics, q-Pochhammer Symbol.
FORMULA
Equals exp(-Sum_{k>0} sigma_1(k)/(k*4^k)) where sigma_1() is A000203(). - Hieronymus Fischer, Aug 07 2007
Equals (1/4; 1/4)_{infinity}, where (a;q)_{infinity} is the q-Pochhammer symbol. - G. C. Greubel, Nov 30 2015
From Amiram Eldar, May 09 2023: (Start)
Equals sqrt(Pi/log(2)) * exp(log(2)/12 - Pi^2/(12*log(2))) * Product_{k>=1} (1 - exp(-2*k*Pi^2/log(2))) (McIntosh, 1995).
Equals Sum_{n>=0} (-1)^n/A027637(n). (End)
EXAMPLE
0.68853753712033971545651435729350818467554981937833...
MATHEMATICA
EllipticThetaPrime[1, 0, 1/2]^(1/3)/2^(1/4)
N[QPochhammer[1/4]] (* G. C. Greubel, Nov 30 2015 *)
RealDigits[Fold[Times, 1-1/4^Range[1000]], 10, 110][[1]] (* Harvey P. Dale, Sep 27 2024 *)
PROG
(PARI) prodinf(x=1, 1-1/4^x) \\ Altug Alkan, Dec 01 2015
KEYWORD
nonn,cons
AUTHOR
Eric W. Weisstein, Nov 09 2004
STATUS
approved