login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A100134 a(n) = Sum_{k=0..floor(n/6)} C(n-3k,3k). 5
1, 1, 1, 1, 1, 1, 2, 5, 11, 21, 36, 57, 86, 128, 194, 305, 497, 827, 1381, 2287, 3739, 6042, 9693, 15519, 24901, 40126, 64933, 105364, 171112, 277696, 450017, 728201, 1177181, 1902321, 3074733, 4972113, 8044478, 13020029, 21075947, 34114553 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,7

COMMENTS

For n>1, a(n-1) + A101551(n-1) + A102516(n-2) = F(n) where F(n) is the n-th Fibonacci number (A000045(n)). This sequence, A101551 and A102516 can be viewed as parts of a three-term linear recurrence defined as b(0) = b(1) = (1,0,0) = (x(0),y(0),z(0)) = (x(1),y(1),z(1)); b(n+1) = (x(n)+y(n-1),y(n)+z(n-1),z(n)+x(n-1)); which gives a(n) = x(n), A101551(n) = y(n), A102516(n) = z(n+1). - Gerald McGarvey, Apr 26 2005

LINKS

Table of n, a(n) for n=0..39.

V. C. Harris, C. C. Styles, A generalization of Fibonacci numbers, Fib. Quart. 2 (1964) 277-289, sequence u(n,3,3).

Index entries for linear recurrences with constant coefficients, signature (3,-3,1,0,0,1).

FORMULA

G.f.: (1-x)^2/((1-x)^3-x^6);

a(n) = 3a(n-1)-3a(n-2)+a(n-3)+a(n-6).

MAPLE

ZL:=[S, {a = Atom, b = Atom, S = Prod(X, Sequence(Prod(X, X, X))), X = Sequence(b, card >= 2)}, unlabelled]: seq(combstruct[count](ZL, size=n), n=2..41); - Zerinvary Lajos, Mar 26 2008

PROG

(PARI) a(n) = sum(k=0, n\6, binomial(n-3*k, 3*k)); \\ Michel Marcus, Sep 08 2017

CROSSREFS

Cf. A100135, A100136, A100137, A100138, A100139.

Cf. A101551, A102516, A000045.

Sequence in context: A294745 A050407 A113032 * A137356 A103198 A183929

Adjacent sequences:  A100131 A100132 A100133 * A100135 A100136 A100137

KEYWORD

nonn

AUTHOR

Paul Barry, Nov 06 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified January 17 16:43 EST 2018. Contains 297822 sequences.