login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A100134
a(n) = Sum_{k=0..floor(n/6)} binomial(n-3k,3k).
10
1, 1, 1, 1, 1, 1, 2, 5, 11, 21, 36, 57, 86, 128, 194, 305, 497, 827, 1381, 2287, 3739, 6042, 9693, 15519, 24901, 40126, 64933, 105364, 171112, 277696, 450017, 728201, 1177181, 1902321, 3074733, 4972113, 8044478, 13020029, 21075947, 34114553
OFFSET
0,7
COMMENTS
For n > 1, a(n-1) + A101551(n-1) + A102516(n-2) = F(n) where F(n) is the n-th Fibonacci number (A000045(n)). This sequence, A101551 and A102516 can be viewed as parts of a three-term linear recurrence defined as b(0) = b(1) = (1,0,0) = (x(0),y(0),z(0)) = (x(1),y(1),z(1)); b(n+1) = (x(n)+y(n-1),y(n)+z(n-1),z(n)+x(n-1)); which gives a(n) = x(n), A101551(n) = y(n), A102516(n) = z(n+1). - Gerald McGarvey, Apr 26 2005
LINKS
V. C. Harris and C. C. Styles, A generalization of Fibonacci numbers, Fib. Quart. 2 (1964) 277-289, sequence u(n,3,3).
FORMULA
G.f.: (1-x)^2/((1-x)^3 - x^6);
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) + a(n-6).
MAPLE
ZL:=[S, {a = Atom, b = Atom, S = Prod(X, Sequence(Prod(X, X, X))), X = Sequence(b, card >= 2)}, unlabelled]: seq(combstruct[count](ZL, size=n), n=2..41); # Zerinvary Lajos, Mar 26 2008
MATHEMATICA
Table[Sum[Binomial[n-3k, 3k], {k, 0, Floor[n/6]}], {n, 0, 40}] (* Harvey P. Dale, Sep 22 2020 *)
PROG
(PARI) a(n) = sum(k=0, n\6, binomial(n-3*k, 3*k)); \\ Michel Marcus, Sep 08 2017
KEYWORD
nonn,easy,changed
AUTHOR
Paul Barry, Nov 06 2004
STATUS
approved