This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A100137 Sum C(n-3k,3k)2^(n-6k), k=0..floor(n/6). 1
 1, 2, 4, 8, 16, 32, 65, 136, 296, 672, 1584, 3840, 9473, 23566, 58736, 146080, 361760, 891328, 2184961, 5331476, 12958684, 31400160, 75910320, 183220800, 441787201, 1064687642, 2565404524, 6181873208, 14899796416, 35922756992, 86635757825 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Binomial transform of 1,1,1,1,1,1,2,2,2,5,5,11,11,... with g.f. (1-x)^2(1+x)^2/(1-3x^2+3x^4-2x^6)=(1+x)(1-x^2)^2/((1-x^2)^3-x^6). LINKS Index entries for linear recurrences with constant coefficients, signature (6,-12,8,0,0,1). FORMULA G.f.: (1-2x)^2/((1-2x)^3-x^6); a(n)=6a(n-1)-12a(n-2)+8a(n-3)+a(n-6). MATHEMATICA Table[Sum[Binomial[n-3k, 3k]2^(n-6k), {k, 0, Floor[n/6]}], {n, 0, 30}] (* or *) LinearRecurrence[{6, -12, 8, 0, 0, 1}, {1, 2, 4, 8, 16, 32}, 31] (* Harvey P. Dale, Mar 19 2015 *) CROSSREFS Cf. A024493, A100134. Sequence in context: A023421 A098051 A084637 * A210542 A141366 A049142 Adjacent sequences:  A100134 A100135 A100136 * A100138 A100139 A100140 KEYWORD easy,nonn AUTHOR Paul Barry, Nov 06 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 17 14:12 EST 2018. Contains 299296 sequences. (Running on oeis4.)