|
|
A099350
|
|
Numbers k such that 4*k! - 1 is prime.
|
|
11
|
|
|
0, 1, 2, 3, 5, 6, 10, 11, 51, 63, 197, 313, 579, 1264, 2276, 2669, 4316, 4382
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,3
|
|
COMMENTS
|
a(19) > 4570. - Jinyuan Wang, Feb 04 2020
|
|
LINKS
|
Table of n, a(n) for n=1..18.
|
|
EXAMPLE
|
k = 5 is here because 4*5! - 1 = 479 is prime.
|
|
MAPLE
|
for n from 0 to 1000 do if isprime(4*n! - 1) then print(n) end if end do;
|
|
MATHEMATICA
|
For[n = 0, True, n++, If[PrimeQ[4 n! - 1], Print[n]]] (* Jean-François Alcover, Sep 23 2015 *)
|
|
PROG
|
(PARI) is_A099350(n)=ispseudoprime(n!*4-1) \\ M. F. Hasler, Sep 20 2015
|
|
CROSSREFS
|
Cf. A076680.
Cf. A002982, A076133, A076134, A099351, A180627, A180628, A180629, A180630, A180631.
Sequence in context: A057546 A339514 A138587 * A337218 A306296 A191173
Adjacent sequences: A099347 A099348 A099349 * A099351 A099352 A099353
|
|
KEYWORD
|
nonn,hard,more
|
|
AUTHOR
|
Brian Kell, Oct 12 2004
|
|
EXTENSIONS
|
a(14) from Alois P. Heinz, Sep 21 2015
a(15)-a(16) from Jean-François Alcover, Sep 23 2015
a(17)-a(18) from Jinyuan Wang, Feb 04 2020
|
|
STATUS
|
approved
|
|
|
|