login
A099195
a(n) = (n^2)*( n^6 + 28*n^4 + 154*n^2 + 132 )/315.
12
0, 1, 16, 129, 704, 2945, 10128, 29953, 78592, 187137, 411280, 845185, 1640640, 3032705, 5373200, 9173505, 15158272, 24331777, 38058768, 58161793, 87037120, 127791489, 184402064, 261902081, 366594816, 506298625, 690625936, 931299201, 1242506944, 1641303169, 2148053520
OFFSET
0,3
REFERENCES
H. S. M. Coxeter, Regular Polytopes, New York: Dover, 1973.
LINKS
Milan Janjic and B. Petkovic, A Counting Function, arXiv 1301.4550 [math.CO], 2013.
Milan Janjic and B. Petkovic, A Counting Function Generalizing Binomial Coefficients and Some Other Classes of Integers, J. Int. Seq. 17 (2014) # 14.3.5
Hyun Kwang Kim, On Regular Polytope Numbers, Proc. Amer. Math. Soc., 131 (2003), 65-75.
Index entries for linear recurrences with constant coefficients, signature (9,-36,84,-126,126,-84,36,-9,1).
FORMULA
a(n) = (n^2)*( n^6 + 28*n^4 + 154*n^2 + 132 )/315.
G.f.: x*(1+x)^7/(1-x)^9. [R. J. Mathar, Jul 18 2009]
a(n) = 16*a(n-1)/(n-1) + a(n-2) for n > 1. - Seiichi Manyama, Jun 06 2018
MATHEMATICA
LinearRecurrence[{9, -36, 84, -126, 126, -84, 36, -9, 1}, {0, 1, 16, 129, 704, 2945, 10128, 29953, 78592}, 40] (* Harvey P. Dale, Jan 23 2019 *)
PROG
(PARI) concat(0, Vec(x*(1+x)^7/(1-x)^9 + O(x^40))) \\ Michel Marcus, Dec 14 2015
CROSSREFS
Similar sequences: A005900 (m=3), A014820(n-1) (m=4), A069038 (m=5), A069039 (m=6), A099193 (m=7), A099196 (m=9), A099197 (m=10).
Cf. A000332.
Sequence in context: A308310 A120785 A031156 * A041486 A196642 A196595
KEYWORD
easy,nonn
AUTHOR
Jonathan Vos Post, Nov 16 2004
STATUS
approved