login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A069039 Expansion of x(1+x)^5/(1-x)^7. 6
0, 1, 12, 73, 304, 985, 2668, 6321, 13504, 26577, 48940, 85305, 142000, 227305, 351820, 528865, 774912, 1110049, 1558476, 2149033, 2915760, 3898489, 5143468, 6704017, 8641216, 11024625, 13933036, 17455257, 21690928, 26751369, 32760460 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Figurate numbers based on the 6-dimensional regular convex polytope called the 6-dimensional cross-polytope, or 6-dimensional hyperoctahedron, which is represented by the Schlaefli symbol {3, 3, 3, 3, 4}. It is the dual of the 6-dimensional hypercube. Kim asserts that every nonnegative integer can be represented by the sum of no more than 19 of these 6-crosspolytope numbers. - Jonathan Vos Post, Nov 16 2004

Starting with 1 = binomial transform of [1, 11, 50, 120, 160, 112, 32, 0, 0, 0,...] where (1, 11, 50, 120, 160, 112, 32) = row 6 of the Chebyshev triangle A081277. Also = row 6 of the array in A142978. - Gary W. Adamson, Jul 19 2008

REFERENCES

H. S. M. Coxeter, Regular Polytopes, New York: Dover, 1973.

E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 240.

J. V. Post, "4-Dimensional Jonathan numbers: polytope numbers and Centered polytope numbers of Higher Than 3 Dimensions", Draft 1.5 of 9 a.m., 12 March 2004, circulated by e-mail.

LINKS

Table of n, a(n) for n=0..30.

M. Janjic and B. Petkovic, A Counting Function, arXiv 1301.4550 [math.CO], 2013.

Hyun Kwang Kim, On Regular Polytope Numbers, Proc. Amer. Math. Soc., 131 (2003), 65-75.

J. V. Post, Table of polytope numbers, Sorted, Through 1,000,000.

J. V. Post, Math Pages.

Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1).

FORMULA

Recurrence: a(n) = 7*a(n-1)-21*a(n-2)+35*a(n-3)-35*a(n-4)+21*a(n-5)-7*a(n-6)+a(n-7).

a(n) = 6-crosspolytope(n) = (n^2)*(2*n^4 + 20*n^2 + 23 )/45. E.g. a(12) = 142000 because (12^2)*(2*12^4 + 20*12^2 + 23 )/45. - Jonathan Vos Post, Nov 16 2004

From Stephen Crowley, Jul 14 2009: (Start)

Sum_{n >= 1} 1/a(n) = -5*(Sum(_alpha*(77*_alpha^2+655)*Psi(1-_alpha), _alpha = RootOf(2*_Z^4+20*_Z^2+23)))*(1/3174)+15*Pi^2*(1/46)=1.10203455013915915542552577192042916250524...

Sum_{n>=1} 1/(a(n)*n!) = hypergeom([1, 1, 1, 1-a, 1+b, 1-b, 1+a], [2, 2, 2, 2+b, 2-b, 2+a, 2-a], 1) = 1.04409584723862654376639417281585634150689... where a = I*sqrt(20+6*sqrt(6))*(1/2) and b = I*sqrt(20-6*sqrt(6))*(1/2). (End)

MAPLE

al:=proc(s, n) binomial(n+s-1, s); end; be:=proc(d, n) local r; add( (-1)^r*binomial(d-1, r)*2^(d-1-r)*al(d-r, n), r=0..d-1); end; [seq(be(6, n), n=0..100)];

MATHEMATICA

a[n_] := n^2*(2*n^4 + 20*n^2 + 23)/45; Table[a[n], {n, 0, 30}] (* Jean-Fran├žois Alcover, Jan 29 2014 *)

PROG

(PARI) x='x+O('x^100); concat(0, Vec(x*(1+x)^5/(1-x)^7)) \\ Altug Alkan, Dec 14 2015

CROSSREFS

Cf. A000332, A014820, A005900, A069038, A099193, A099195.

Cf. A081277, A142978.

Sequence in context: A120783 A103475 A024014 * A156196 A041270 A055912

Adjacent sequences:  A069036 A069037 A069038 * A069040 A069041 A069042

KEYWORD

nonn,easy

AUTHOR

Vladeta Jovovic, Apr 03 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 21 06:31 EST 2017. Contains 294989 sequences.