OFFSET
0,2
REFERENCES
R. C. Alperin, A nonlinear recurrence and its relations to Chebyshev polynomials, Fib. Q., 58:2 (2020), 140-142.
LINKS
Colin Barker, Table of n, a(n) for n = 0..1000
P. Barry, Symmetric Third-Order Recurring Sequences, Chebyshev Polynomials, and Riordan Arrays, JIS 12 (2009) 09.8.6
Index entries for linear recurrences with constant coefficients, signature (4,4,-1).
FORMULA
a(n) = 5*a(n-1) -a(n-2) +(-1)^n, a(0)=1, a(1)=4. - Vincenzo Librandi, Mar 22 2011
G.f.: 1 / ((1 + x) * (1 - 5*x + x^2)).
a(-3-n) = -a(n). - Michael Somos, Jan 25 2013
a(n) = (2^(-n)*(3*(-2)^n+(9-2*sqrt(21))*(5-sqrt(21))^n+(5+sqrt(21))^n*(9+2*sqrt(21))))/21. - Colin Barker, Nov 02 2016
EXAMPLE
1 + 4*x + 20*x^2 + 95*x^3 + 456*x^4 + 2184*x^5 + 10465*x^6 + ...
MATHEMATICA
CoefficientList[Series[1/((1+x)*(1-5*x+x^2)), {x, 0, 50}], x] (* or *) LinearRecurrence[{4, 4, -1}, {1, 4, 20}, 30] (* G. C. Greubel, Dec 31 2017 *)
PROG
(PARI) Vec(1/(1+x)/(1-5*x+x^2)+O(x^99)) \\ Charles R Greathouse IV, Sep 26 2012
(PARI) {a(n) = (3 * (-1)^n + 38 * subst( poltchebi(n), x, 5/2) - 8 * subst( poltchebi(n-1), x, 5/2)) / 21} /* Michael Somos, Jan 25 2013 */
(Magma) I:=[1, 4, 20]; [n le 3 select I[n] else 4*Self(n-1) + 4*Self(n-2) - Self(n-3): n in [1..30]]; // G. C. Greubel, Dec 31 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Ralf Stephan, Sep 26 2004
STATUS
approved