login
A099026
Array x AND NOT y, read by rising antidiagonals.
3
0, 1, 0, 2, 0, 0, 3, 2, 1, 0, 4, 2, 0, 0, 0, 5, 4, 1, 0, 1, 0, 6, 4, 4, 0, 2, 0, 0, 7, 6, 5, 4, 3, 2, 1, 0, 8, 6, 4, 4, 0, 2, 0, 0, 0, 9, 8, 5, 4, 1, 0, 1, 0, 1, 0, 10, 8, 8, 4, 2, 0, 0, 0, 2, 0, 0, 11, 10, 9, 8, 3, 2, 1, 0, 3, 2, 1, 0, 12, 10, 8, 8, 8, 2, 0, 0, 4, 2, 0, 0, 0, 13, 12, 9, 8, 9, 8, 1
OFFSET
0,4
COMMENTS
For n>0, the n-th row and the differences of the n-th column have period 2^floor(log_(n)+1).
LINKS
Rémy Sigrist, Colored representation of the table for n, k < 2^10 (the color at (x, y) is function of T(x, y))
FORMULA
T(x, y) = x AND NOT y. The AND NOT operation satisfies the bitwise truth table: (0, 0) = 0, (0, 1) = 0, (1, 0) = 1, (1, 1) = 0.
EXAMPLE
0,0,0,0,0,0,
1,0,1,0,1,0,
2,2,0,0,2,2,
3,2,1,0,3,2,
4,4,4,4,0,0,
5,4,5,4,1,0,
MATHEMATICA
Table[BitAnd[x - y, BitNot[y]], {x, 0, 15}, {y, 0, x}] (* Paolo Xausa, Sep 30 2024 *)
PROG
(PARI) T(x, y)=bitnegimply(x, y)
CROSSREFS
Rows include A000004, A059841. Columns include A001477, A052928. Antidiagonal sums are in A099027.
Cf. A003985 (AND), A003986 (OR), A003987 (XOR).
Sequence in context: A330463 A142886 A374019 * A341410 A205341 A195664
KEYWORD
nonn,tabl,base
AUTHOR
Ralf Stephan, Sep 26 2004
STATUS
approved