login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A099023 Diagonal of Euler-Seidel matrix with start sequence e.g.f. 1-tanh(x). 6
1, -1, 4, -46, 1024, -36976, 1965664, -144361456, 13997185024, -1731678144256, 266182076161024, -49763143319190016, 11118629668610842624, -2925890822304510631936, 895658946905031792553984 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

T(2n,n), where T is A008280 (signed).

LINKS

Table of n, a(n) for n=0..14.

Peter Luschny, An old operation on sequences: the Seidel transform

FORMULA

|a(n)| = A000657(n) - Sean A. Irvine, Dec 22 2010

G.f.: 1/G(0) where G(k) = 1 + x*(k+1)*(4*k+1)/(1 + x*(k+1)*(4*k+3)/G(k+1) ) ;  (recursively defined continued fraction). - Sergei N. Gladkovskii, Feb 05 2013

G.f.: G(0)/(1+x), where G(k) = 1 - x^2*(k+1)^2*(4*k+1)*(4*k+3)/( x^2*(k+1)^2*(4*k+1)*(4*k+3) - (1 + x*(8*k^2+4*k+1))*(1 + x*(8*k^2+20*k+13))/G(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Feb 01 2014

PROG

(Sage) # Variant of an algorithm of L. Seidel (1877).

def A099023_list(n) :

    dim = 2*n; E = matrix(ZZ, dim); E[0, 0] = 1

    for m in (1..dim-1) :

        if m % 2 == 0 :

            E[m, 0] = 1;

            for k in range(m-1, -1, -1) :

                E[k, m-k] = E[k+1, m-k-1] - E[k, m-k-1]

        else :

            E[0, m] = 1;

            for k in range(1, m+1, 1) :

                E[k, m-k] = E[k-1, m-k+1] + E[k-1, m-k]

    return [E[k, k] for k in range((dim+1)//2)]

# Peter Luschny, Jul 14 2012

CROSSREFS

Cf. A000657, A008280, A029582, A009744.

Sequence in context: A234527 A126739 A191870 * A000657 A001623 A188634

Adjacent sequences:  A099020 A099021 A099022 * A099024 A099025 A099026

KEYWORD

sign

AUTHOR

Ralf Stephan, Sep 23 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 4 19:31 EST 2016. Contains 278755 sequences.