login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A099023 Diagonal of Euler-Seidel matrix with start sequence e.g.f. 1-tanh(x). 6
1, -1, 4, -46, 1024, -36976, 1965664, -144361456, 13997185024, -1731678144256, 266182076161024, -49763143319190016, 11118629668610842624, -2925890822304510631936, 895658946905031792553984 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

T(2n,n), where T is A008280 (signed).

LINKS

Table of n, a(n) for n=0..14.

Peter Luschny, An old operation on sequences: the Seidel transform

FORMULA

|a(n)| = A000657(n) - Sean A. Irvine, Dec 22 2010

G.f.: 1/G(0) where G(k) = 1 + x*(k+1)*(4*k+1)/(1 + x*(k+1)*(4*k+3)/G(k+1) ) ;  (recursively defined continued fraction). - Sergei N. Gladkovskii, Feb 05 2013

G.f.: G(0)/(1+x), where G(k) = 1 - x^2*(k+1)^2*(4*k+1)*(4*k+3)/( x^2*(k+1)^2*(4*k+1)*(4*k+3) - (1 + x*(8*k^2+4*k+1))*(1 + x*(8*k^2+20*k+13))/G(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Feb 01 2014

PROG

(Sage) # Variant of an algorithm of L. Seidel (1877).

def A099023_list(n) :

    dim = 2*n; E = matrix(ZZ, dim); E[0, 0] = 1

    for m in (1..dim-1) :

        if m % 2 == 0 :

            E[m, 0] = 1;

            for k in range(m-1, -1, -1) :

                E[k, m-k] = E[k+1, m-k-1] - E[k, m-k-1]

        else :

            E[0, m] = 1;

            for k in range(1, m+1, 1) :

                E[k, m-k] = E[k-1, m-k+1] + E[k-1, m-k]

    return [E[k, k] for k in range((dim+1)//2)]

# Peter Luschny, Jul 14 2012

CROSSREFS

Cf. A000657, A008280, A029582, A009744.

Sequence in context: A234527 A126739 A191870 * A000657 A001623 A188634

Adjacent sequences:  A099020 A099021 A099022 * A099024 A099025 A099026

KEYWORD

sign

AUTHOR

Ralf Stephan, Sep 23 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified December 20 18:40 EST 2014. Contains 252288 sequences.