login
A098836
Deficient Smith numbers.
1
4, 22, 27, 58, 85, 94, 121, 166, 202, 265, 274, 319, 346, 355, 382, 391, 454, 483, 517, 526, 535, 562, 627, 634, 645, 663, 706, 729, 778, 825, 861, 895, 913, 915, 922, 958, 985, 1111, 1165, 1219, 1255, 1282, 1449, 1507, 1581, 1633, 1642, 1678, 1755, 1795
OFFSET
1,1
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Harvey P. Dale)
EXAMPLE
a(4) = 58 because 58 is a Smith number as well as a deficient number.
MATHEMATICA
sndnQ[n_]:=!PrimeQ[n]&&DivisorSigma[1, n]<2n&&Total[Flatten[ IntegerDigits/@ (Flatten[ Table[#[[1]], {#[[2]]}]&/@ FactorInteger[ n]])]]==Total[ IntegerDigits[ n]]; Select[Range[2, 2000], sndnQ] (* Harvey P. Dale, Sep 10 2013 *)
CROSSREFS
Intersection of A005100 and A006753.
Sequence in context: A213240 A279314 A006753 * A204341 A036920 A036921
KEYWORD
base,nonn
AUTHOR
Shyam Sunder Gupta, Oct 10 2004
STATUS
approved