login
A098837
Smith semiprimes.
1
4, 22, 58, 85, 94, 121, 166, 202, 265, 274, 319, 346, 355, 382, 391, 454, 517, 526, 535, 562, 634, 706, 778, 895, 913, 922, 958, 985, 1111, 1165, 1219, 1255, 1282, 1507, 1633, 1642, 1678, 1795, 1822, 1858, 1894, 1903, 1921, 1966, 2038, 2155, 2173, 2182, 2218
OFFSET
1,1
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
EXAMPLE
a(3)=58 because 58 is a Smith number as well as a semiprime.
MAPLE
N:= 10000: # for terms <= N
P:= select(isprime, [2, seq(i, i=3..N/2, 2)]):
nP:= nops(P):
sP:= map(p -> convert(convert(p, base, 10), `+`), P):
Res:= {}:
for i from 1 to nP do
for j from i to nP do
n:= P[i]*P[j];
if n > N then break fi;
if convert(convert(n, base, 10), `+`) = sP[i]+sP[j] then
Res:= Res union {n}
fi
od od:
sort(convert(Res, list)); # Robert Israel, Aug 24 2024
MATHEMATICA
sspQ[n_]:=PrimeOmega[n]==2&&Total[Flatten[IntegerDigits/@(Table[#[[1]], #[[2]]]&/@FactorInteger[n])]]==Total[IntegerDigits[n]]; Select[Range[ 2220], sspQ] (* Harvey P. Dale, Jul 25 2019 *)
PROG
(PARI) dsum(n)=my(s); while(n, s+=n%10; n\=10); s
list(lim)=my(v=List(), d); forprime(p=2, sqrt(lim), d=dsum(p); forprime(q=p, lim\p, if(d+dsum(q)==dsum(p*q), listput(v, p*q)))); vecsort(Vec(v)) \\ Charles R Greathouse IV, Jan 03 2012
CROSSREFS
Sequence in context: A341375 A076525 A089761 * A104171 A036924 A130015
KEYWORD
base,nonn
AUTHOR
Shyam Sunder Gupta, Oct 10 2004
STATUS
approved