

A098837


Smith semiprimes.


1



4, 22, 58, 85, 94, 121, 166, 202, 265, 274, 319, 346, 355, 382, 391, 454, 517, 526, 535, 562, 634, 706, 778, 895, 913, 922, 958, 985, 1111, 1165, 1219, 1255, 1282, 1507, 1633, 1642, 1678, 1795, 1822, 1858, 1894, 1903, 1921, 1966, 2038, 2155, 2173, 2182, 2218
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Cubefree Smith numbers. This is to cubefree as A202387 is to squarefree. [Jonathan Vos Post, Jan 02 2012]


LINKS

Charles R Greathouse IV, Table of n, a(n) for n = 1..10000


FORMULA

A006753 INTERSECTION A004709.


EXAMPLE

a(3)=58 because 58 is a Smith number as well as a semiprime.


PROG

(PARI) dsum(n)=my(s); while(n, s+=n%10; n\=10); s
list(lim)=my(v=List(), d); forprime(p=2, sqrt(lim), d=dsum(p); forprime(q=p, lim\p, if(d+dsum(q)==dsum(p*q), listput(v, p*q)))); vecsort(Vec(v)) \\ Charles R Greathouse IV, Jan 03 2012


CROSSREFS

Cf. A006753, A004709.
Sequence in context: A122241 A076525 A089761 * A104171 A036924 A130015
Adjacent sequences: A098834 A098835 A098836 * A098838 A098839 A098840


KEYWORD

base,nonn


AUTHOR

Shyam Sunder Gupta, Oct 10 2004


STATUS

approved



