login
A098443
Expansion of 1/sqrt(1-8*x-4*x^2).
4
1, 4, 26, 184, 1366, 10424, 80996, 637424, 5064166, 40528984, 326251276, 2638751504, 21426682876, 174563719984, 1426219233416, 11681133293024, 95877105146246, 788433553532824, 6494463369141116, 53576199709855184
OFFSET
0,2
COMMENTS
Binomial transform of A098444. Second binomial transform of A084770. Third binomial transform of A098264.
LINKS
Hacène Belbachir, Abdelghani Mehdaoui, László Szalay, Diagonal Sums in the Pascal Pyramid, II: Applications, J. Int. Seq., Vol. 22 (2019), Article 19.3.5.
Tony D. Noe, On the Divisibility of Generalized Central Trinomial Coefficients, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.7.
FORMULA
E.g.f.: exp(4x)*BesselI(0, 2*sqrt(5)*x).
a(n) = Sum_{k=0..floor(n/2)} binomial(n, k)*binomial(2(n-k), n)*2^(n-2k).
D-finite with recurrence: n*a(n) = 4*(2*n-1)*a(n-1) + 4*(n-1)*a(n-2). - Vaclav Kotesovec, Oct 15 2012
a(n) ~ sqrt(50+20*sqrt(5))*(4+2*sqrt(5))^n/(10*sqrt(Pi*n)). Equivalently, a(n) ~ 2^(n-1/2) * phi^(3*n + 3/2) / (5^(1/4) * sqrt(Pi*n)), where phi = A001622 is the golden ratio. - Vaclav Kotesovec, Oct 15 2012, updated Mar 21 2024
G.f.: 1/(1 - 2*x*(2+x)*Q(0)), where Q(k)= 1 + (4*k+1)*x*(2+x)/(k+1 - x*(2+x)*(2*k+2)*(4*k+3)/(2*x*(2+x)*(4*k+3) + (2*k+3)/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 15 2013
G.f.: Q(0), where Q(k) = 1 + 2*x*(x+2)*(4*k+1)/( 2*k+1 - x*(x+2)*(2*k+1)*(4*k+3)/(x*(x+2)*(4*k+3) + (k+1)/Q(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Sep 16 2013
From Peter Bala, March 16 2024: (Start)
a(n) = (-2*i)^n * P(n, 2*i), where i = sqrt(-1) and P(n, x) denotes the n-th Legendre polynomial.
Sum_{n >= 1} (-1)^(n+1)*4^n/(n*a(n-1)*a(n)) = 2*arctan(1/2) = 2*A073000. (End)
EXAMPLE
G.f. = 1 + 4*x + 26*x^2 + 184*x^3 + 1366*x^4 + 10424*x^5 + 80996*x^6 + ...
MATHEMATICA
CoefficientList[Series[1/Sqrt[1 - 8*x - 4*x^2], {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 15 2012, updated Mar 21 2024 *)
PROG
(PARI) x='x+O('x^66); Vec(1/sqrt(1-8*x-4*x^2)) \\ Joerg Arndt, May 11 2013
CROSSREFS
Sequence in context: A199490 A116429 A084134 * A264226 A052775 A137964
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Sep 07 2004
STATUS
approved