login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A098444 Expansion of 1/sqrt(1-6x-11x^2). 2
1, 3, 19, 117, 771, 5193, 35629, 247467, 1734931, 12250953, 87006249, 620818047, 4447016781, 31959556983, 230331965379, 1664043517557, 12047551338771, 87387014213433, 634918255153369, 4619923954541247, 33661450900419001 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Binomial transform of A084770. Second binomial transform of A098264. Binomial transform is A098443.

Coefficient of x^n in (1 + 3 x + 5 x^2)^n = number of paths from the origin to (n,0) with steps U=(1,1), H=(1,0) and D=(1,-1); U can have 5 colors and H can have 3 colors. - N-E. Fahssi, Jan 28 2008

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..200

Tony D. Noe, On the Divisibility of Generalized Central Trinomial Coefficients, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.7.

FORMULA

E.g.f.: exp(3x)*BesselI(0, 2*sqrt(5)*x)

Recurrence: n*a(n) = 3*(2*n-1)*a(n-1) + 11*(n-1)*a(n-2). - Vaclav Kotesovec, Oct 15 2012

a(n) ~ sqrt(50+15*sqrt(5))*(3+2*sqrt(5))^n/(10*sqrt(Pi*n)). - Vaclav Kotesovec, Oct 15 2012

MATHEMATICA

Table[SeriesCoefficient[1/Sqrt[1-6*x-11*x^2], {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Oct 15 2012 *)

PROG

(PARI) x='x+O('x^66); Vec(1/sqrt(1-6*x-11*x^2)) \\ Joerg Arndt, May 11 2013

CROSSREFS

Sequence in context: A037585 A084133 A005667 * A290477 A221184 A274852

Adjacent sequences:  A098441 A098442 A098443 * A098445 A098446 A098447

KEYWORD

easy,nonn

AUTHOR

Paul Barry, Sep 07 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 22 04:29 EDT 2018. Contains 316431 sequences. (Running on oeis4.)