OFFSET
0,2
COMMENTS
a(n) = (5/4)*{1, 17, 17, 289, 289, 4913, ...} - 16*{0, 1, 0, 16, 0, 256, ...} - (1/4)*{1, 1, 1, 1, 1, 1, ...}.
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (1,33,-33,-272,272).
FORMULA
G.f.: (1+4*x-17*x^2-48*x^3)/((1-x)*(1-16*x^2)*(1-17*x^2)).
a(n) = (5/8)*((1-sqrt(17))*(-sqrt(17))^n + (1+sqrt(17))*(sqrt(17))^n) - 2*(4^n - (-4)^n) - 1/4.
a(n) = a(n-1) + 33*a(n-2) - 33*a(n-3) - 272*a(n-4) + 272*a(n-5).
MAPLE
seq(coeff(series((1+4*x-17*x^2-48*x^3)/((1-x)*(1-16*x^2)*(1-17*x^2)), x, n+1), x, n), n = 0..30); # G. C. Greubel, Sep 17 2019
MATHEMATICA
CoefficientList[Series[(1+4*x-17*x^2-48*x^3)/((1-x)*(1-16*x^2)*(1-17*x^2)), {x, 0, 30}], x] (* G. C. Greubel, Sep 17 2019 *)
PROG
(PARI) my(x='x+O('x^30)); Vec((1+4*x-17*x^2-48*x^3)/((1-x)*(1-16*x^2)*(1-17*x^2))) \\ G. C. Greubel, Sep 17 2019
(Magma) R<x>:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1+4*x-17*x^2-48*x^3)/((1-x)*(1-16*x^2)*(1-17*x^2)) )); // G. C. Greubel, Sep 17 2019
(Sage)
def A097175_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P((1+4*x-17*x^2-48*x^3)/((1-x)*(1-16*x^2)*(1-17*x^2))).list()
A097175_list(30) # G. C. Greubel, Sep 17 2019
(GAP) a:=[1, 5, 21, 105, 361];; for n in [6..30] do a[n]:=a[n-1] + 33*a[n-2] - 33*a[n-3] - 272*a[n-4] + 272*a[n-5]; od; a; # G. C. Greubel, Sep 17 2019
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Jul 30 2004
STATUS
approved