login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A096825 Maximal size of an antichain in divisor lattice D(n). 5
1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 3, 1, 1, 2, 2, 2, 3, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 4, 1, 2, 2, 1, 2, 3, 1, 2, 2, 3, 1, 3, 1, 2, 2, 2, 2, 3, 1, 2, 1, 2, 1, 4, 2, 2, 2, 2, 1, 4, 2, 2, 2, 2, 2, 2, 1, 2, 2, 3 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,6

COMMENTS

The divisor lattice D(n) is the lattice of the divisors of the natural number n.

LINKS

Eric M. Schmidt, Table of n, a(n) for n = 1..10000

S.-H. Cha, E. G. DuCasse, L. V. Quintas, Graph invariants based on the divides relation and ordered by prime signatures, arXiv:1405.5283 (2014), (2.19)

FORMULA

a(n) is the coefficient at x^k in (1+x+...+x^k_1)*...*(1+x+...+x^k_q) where n=p_1^k_1*...*p_q^k_q is the prime factorization of n and k=floor((k_1+...+k_q)/2). - Alec Mihailovs (alec(AT)mihailovs.com), Aug 22 2004

MAPLE

a:=proc(n) local klist, x; klist:=ifactors(n)[2, 1..-1, 2]; coeff(normal(mul((1-x^(k+1))/(1-x), k=klist)), x, floor(add(k, k=klist)/2)) end: seq(a(n), n=1..100);

MATHEMATICA

a[n_] := Module[{pp, kk, x}, {pp, kk} = Transpose[FactorInteger[n]]; Coefficient[ Product[ Total[x^Range[0, k]], {k, kk}], x, Quotient[ Total[ kk], 2] ] ]; Array[a, 100] (* Jean-Fran├žois Alcover, Nov 20 2017 *)

PROG

(Sage)

def A096825(n) :

....if n==1 : return 1

....R.<t> = QQ[]; mults = [x[1] for x in factor(n)]

....return prod((t^(m+1)-1)//(t-1) for m in mults)[sum(mults)//2]

end # Eric M. Schmidt, May 11 2013

(PARI) a(n)=if(n<6||isprimepower(n), return(1)); my(d=divisors(n), r=1, u); d=d[2..#d-1]; for(k=0, 2^#d-1, if(hammingweight(k)<=r, next); u=vecextract(d, k); for(i=1, #u, for(j=i+1, #u, if(u[j]%u[i]==0, next(3)))); r=#u); r \\ Charles R Greathouse IV, May 14 2013

CROSSREFS

Cf. A096826, A096827.

Sequence in context: A079553 A001221 A064372 * A007875 A259936 A050320

Adjacent sequences:  A096822 A096823 A096824 * A096826 A096827 A096828

KEYWORD

nonn

AUTHOR

Yuval Dekel (dekelyuval(AT)hotmail.com) and Vladeta Jovovic, Aug 17 2004

EXTENSIONS

More terms from Alec Mihailovs (alec(AT)mihailovs.com), Aug 22 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 11 19:09 EST 2017. Contains 295919 sequences.